
i

Problem Statement

Today, all the largest supercomputers are manufactured in the US and Asia, not in Eu-
rope. Mont Blanc is a newly started EU project aimed at putting Europe back on the map
of supercomputer manufacturers. The goal is to build a prototype that will be ranked at
the top of the Green500.org ranking list of the most energy efficient computers. Energy
efficiency is already a main design constraint for supercomputers, and it is expected to
become the dominating design challenge in the future. Mont Blanc will achieve energy
efficiency by adopting low end processors from mobile phones and other embedded
systems products. The project considers both GPUs from Nvidia, ARM-Nvidia Tegra
processors and the Mali T604 (quad-core) and T658 (8-core) GPUs developed by ARM.

The main goal of the thesis is to do experiments and evaluate performance and
energy-efficiency of applications using the OmpSs environment for parallel program-
ming developed by UPC/BSC. OmpSs will be used in the Mont Blanc project and is
also a central part of many other European EU-7FP research projects. Consequently,
increased knowledge about OmpSs at NTNU makes it more likely that NTNU can con-
tribute to Mont Blanc and other EU projects in the future. The following elements are
included in the project:

a) Study the OmpSs environment for parallel programming.

b) Evaluate performance and energy-efficiency of OmpSs applications or application
kernels. (The selection of applications is dependent of what OmpSs codes are made
available to NTNU.)

c) Problems should be evaluated for different problem sizes at a desktop computer
equipped with an Intel core i7 (Sandy Bridge) quad-core processor. Currently, energy
measurements can be done by reading the Sandy Bridge MSR energy registers.

d) The effect of vectorization should be investigated.

e) If time permits, and if HW is made available by ARM, energy-efficiency studies of
the same OmpSs codes on ARM HW should be conducted.

f) The report should document the work in a way that helps future students continue
the with projects along the same path of research.

iii

Acknowledgements

First of all I would like to thank professor Lasse Natvig at NTNU for being my primary
supervisor for my thesis, and giving me excellent supervision. He kept me motivated
for working hard on this thesis by giving me very helpful feedback on my work, as well
as providing interesting discussions and ideas at our meetings.

My thanks also goes to Jörg Wagner at the ARM office in Trondheim. He not only
gave us access to ARM hardware by arranging a loan agreement between NTNU and
ARM, but he also spent a significant amount of time to set up the hardware so that it
was ready to use. Additionally, he gave valuable feedback on the final results.

Additionally, I would like to direct my sincere gratitudes to Jan Christian Meyer.
Jan Christian spent a significant amount of time reading through my final report, and
giving very high quality and useful feedback. Thanks to him, the quality of the report
was significantly improved.

v

Abstract

In this thesis, the performance and energy efficiency of two current hardware platforms
are evaluated, the Intel Sandy Bridge Core i7 and ARM Cortex-A9 MPCore test chip,
using techniques like vectorization and multi-threading with task-based programming
using OmpSs. We present results from three task-based programs, Black-Scholes, FFTW
and matrix multiplication on both platforms. The performance and energy efficiency is
compared between different configurations of threads, vectorization and task schedul-
ing algorithms. Energy consumption is measured using the Running Average Power
Limit interface on the Sandy Bridge, and regular sampling of the current power dissi-
pation from the system configuration registers on ARM. The energy efficiency results
are presented using the metrics total energy consumed, power, GFLOPS/W, and the
energy-delay and energy-delay squared products. The energy efficiency of the ARM
Cortex-A9 MPCore is compared to that of Sandy Bridge using the process-normalized
energy-delay and energy-delay squared products, as well as GFLOPS/W and energy.

Black-Scholes is adapted to use vector code, and FFTW is compiled with and with-
out vector support. The matrix multiplication application uses ATLAS, which already is
vectorized. Code for sampling and numerically integrating the power dissipation over
time was developed for ARM, then different task scheduling algorithms are explored
for each application.

For both platforms, vectorization with SSE/AVX and NEON is found to consume
little to no extra energy per second while giving significantly higher performance. Multi-
threading gives higher performance, but with higher power consumption. With AVX
on Intel, Black-Scholes shows an energy efficiency of 0.82 GFLOPS/W, FFTW up to 1.4
GFLOPS/W, and matrix multiplication almost 2 GFLOPS/W. Both multi-threading and
vectorization significantly reduced the energy-delay products, showing up to 99.55%
reduction for Black-Scholes and 93.65% for FFTW compared to non-vectorized single-
threaded code for the Intel platform. The ARM results are restricted from publishing,
but can be found in appendix A for those with access.

Single-threaded execution is shown to give a better GFLOPS/W for small problem
sizes in the benchmarked applications, while the EDP is reduced for multi-threading
even for small problems. Black-Scholes show increased performance and energy effi-
ciency with hyper-threading. FFTW shows no significant difference using hyper-threads
compared to four threads. The performance and energy efficiency for matrix multipli-
cation is lower when hyper-threading is used.

vii

Abstract (Norwegian)

I denne oppgaven evalueres ytelse og energieffektivitet for to moderne maskinvare-
platformer, Intel Sandy Bridge Core i7 og ARM Cortex-A9 MPCore test chip. Teknikker
som vektorisering og multitråding brukes sammen med task-basert programmering i
OmpSs. Vi presenterer resultater fra tre task-baserte programmer, Black-Scholes, FFTW
og matrisemultiplikasjon på begge plattformer hvor ytelse og energieffektivitet sam-
menlignes for forskjellige konfigurasjoner av tråder, vektorisering og task-scheduling-
algoritmer. Energibruk blir målt ved bruk av Running Average Power Limit-grensesnittet
på Sandy Bridge, og ved jevnlig sampling av effekt ved bruk av systemkonfigurasjon-
sregistere på ARM. Resultater for energieffektivitet presenteres ved bruk av metrikker
som total energibruk, effekt, GFLOPS/W, og energy-delay- og energy-delay-squared
produkter. Energieffektiviteten på ARM Cortex-A9 MPCore sammenlignes med Sandy
Bridge ved bruk av prosess-normalisert energy-delay og energy-delay squared, samt
GFLOPS/W og energi.

Black-Scholes blir tilpasset til å bruke vektorkode, og FFTW ble kompilert med og
uten vektorstøtte. Matrisemultiplikasjonsapplikasjonen bruker ATLAS som allerede er
vektorisert. En algoritme for sampling og integrering av effekt ble utviklet for ARM.
Forskjellige task-scheduling-algoritmer ble utforsket for å finne en optimal algoritme
for hver applikasjon.

For begge plattformer viser vektorisering med SSE/AVX og NEON seg å bruke
fra liten til ingen ekstra energi per tidsenhet sammenlignet med ikke-vektorisert kode.
Multitråding gir høyere ytelse, men også et betydelig høyere effektforbruk. Med AVX
på Intel-plattformen viser Black-Scholes en energieffektivitet på 0.82 GFLOPS/W, FFTW
up til 1.4 GFLOPS/W, og matrisemultiplikasjon nesten 2 GFLOPS/W. Både multithread-
ing og vektorisering reduserte energy-delay-produktet betydelig, med opp til 99.55%
reduksjon for Black-Scholes og 93.65% for FFTW sammenlignet med ikke-vektorisert
entrådet kode på Intel-plattformen. ARM-resultatene er unntatt publisering, men finnes
i appendix A for de med tilgang.

Kjøring på èn tråd viser seg å gi høyere GFLOPS/W for små problemstørrelser i
applikasjonene som er testet, mens EDP er redusert med flertråding selv for små prob-
lemer. Black-Scholes viser økt ytelse og energieffektivitet med hyper-tråding. FFTW
viser ingen vesentlig forskjell ved å bruke hypertråder. Både ytelse og energieffektivitet
for matrisemultiplikasjon er lavere når hyper-tråding er brukt.

CONTENTS ix

Contents

Acknowledgements iii

Abstract v

Abstract vii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Scope and Goals . 2
1.3 Terminology . 2

1.3.1 Performance Measurements and FLOPS 2
1.4 Contributions . 2
1.5 Thesis Outline . 3

2 Background 5
2.1 The Mont Blanc Project and Exascale Computing 5

2.1.1 Challenges for exascale supercomputers 5
2.1.2 The Mont Blanc project . 6

2.2 OpenMP Super Scalar (OmpSs) . 7
2.2.1 Task-based programming . 8
2.2.2 Heterogeneous capabilities . 9
2.2.3 Nanos++ and Mercurium . 10
2.2.4 OmpSs in Mont Blanc . 10
2.2.5 Task scheduling and scheduling algorithms 10

2.3 Single Instruction, Multiple Data (SIMD) 11
2.3.1 Streaming SIMD extensions (SSE) 12
2.3.2 Advanced Vector Extensions (AVX) 13
2.3.3 ARM Advanced SIMD Extensions (NEON) 14

2.4 Energy Efficiency Metrics . 15
2.4.1 Energy and power . 15

x CONTENTS

2.4.2 GFLOPS/W . 15
2.4.3 Energy-delay products . 15

2.5 Related Work . 16
2.5.1 The Energy Efficiency of CMP vs SMT for Multimedia Workloads . 16
2.5.2 Energy per Instruction Trends in Intel®Microprocessors 17
2.5.3 Evaluation of OpenMP Task Scheduling Strategies 17
2.5.4 Parallelization of Black-Scholes and dense matrix-matrix multiply

using OmpSs . 17
2.5.5 Benchmarking of FFTW . 18
2.5.6 Energy efficiency of IRAM architectures 18
2.5.7 Green500 . 18
2.5.8 Energy-saving mobile processor architectures 18

3 Application Kernels 19
3.1 Black-Scholes (BSOP) . 19
3.2 Fastest Fourier Transform in the West (FFTW) 20
3.3 Dense General Matrix-Matrix Multiplication and ATLAS 22

4 Implementation 25
4.1 Energy Measurement Algorithms . 25

4.1.1 Sandy Bridge . 25
4.1.2 ARM Cortex-A9 MPCore . 26

4.2 Porting of SSE log and exp to AVX and NEON 28
4.2.1 Porting to AVX . 29
4.2.2 Porting to NEON . 29

4.3 Black-Scholes . 31
4.3.1 Vectorization . 31

4.4 Fastest Fourier Transform in the West . 34
4.4.1 Modifications to the FFTW library 34
4.4.2 Implementation of the benchmark 35

4.5 Matrix Multiplication . 35

5 Experiment Setup and Methodology 37
5.1 Test Bench . 37

5.1.1 Hardware . 37
5.1.2 Software and Libraries . 39
5.1.3 Compiler and compiler flags . 40

5.2 Experiment Methodology . 41
5.2.1 Energy Measurements . 41
5.2.2 Experiments . 41
5.2.3 Cache behavior experiments . 44

5.3 Defining FLOPS Counts . 45
5.4 Problem Sizes and Memory Footprints . 46
5.5 Statistical Metrics . 46

6 Results and Discussion 49

x

CONTENTS xi

6.1 Black-Scholes: Scheduling and Variability in Nanos++ Version 0.6a 50
6.2 Black-Scholes Results . 54

6.2.1 Performance . 55
6.2.2 Energy efficiency . 57
6.2.3 Discussion . 61

6.3 FFTW . 61
6.3.1 Performance . 61
6.3.2 Energy efficiency . 64
6.3.3 Discussion . 68

6.4 Matrix multiplication . 69
6.4.1 Performance . 69
6.4.2 Energy efficiency . 70

7 Performance Modelling and Discussion 73
7.1 Discussion and Analysis of Performance . 73

7.1.1 Task creation and scheduling . 73
7.1.2 Cache behavior . 75

7.2 Energy Efficiency . 77
7.2.1 Impact of vectorization . 77
7.2.2 Impact of multiple cores and hyper-threading 77
7.2.3 Energy usage for large problems . 78

8 Conclusion 81
8.1 Scheduling . 81
8.2 Vectorization . 82
8.3 Multi-threading . 82
8.4 Derived models and discussions . 82
8.5 Conclusion - ARM . 83
8.6 Future Work . 83

8.6.1 Full system energy measurement . 83
8.6.2 Benchmarks on consumer-grade ARM CPUs and Ivy Bridge 83
8.6.3 GPUs and accelerators . 83
8.6.4 Additional applications . 83
8.6.5 Energy-efficient algorithms . 84

8.7 Concluding remarks . 84

Appendices 85

A Performance and Energy Efficiency Results - ARM 87

B Tabulated Data 89

C AVX Enabled Logarithms and Exponential Functions 101

D NEON Enabled Logarithms and Exponential Functions 105

E SSE, AVX and NEON Accellerated Black-Scholes - Source code 109

xii CONTENTS

F FFTW Implementation with OmpSs 117

G Experiment Framework 119
G.1 Experiment Scripts . 119

G.1.1 Experiment specification files and test suites 119
G.1.2 Database layout . 121
G.1.3 Adding support for more benchmarks 122

G.2 Results Extraction and Presentation . 122

H Paper 125

References 137

xii

List of Figures xiii

List of Figures

3.1 Sine wave with high frequency noise . 21
3.2 Sine wave with noise filtered out . 21

5.1 Diagram of caches, cores and hyper-threads on sif 38
5.2 Diagram of caches, cores and memory on the ARM board 39
5.3 Distribution of sample values from MSR consistency test 43
5.4 Distribution of sample values from energy measurements using sampling on

ARM . 44

6.1 Performance with regards to number of threads, Black-Scholes, N=225 51
6.2 Performance with regards to number of threads, Black-Scholes, N=213 51
6.3 Performance of small problem, distributed breadth-first scheduling 52
6.4 Performance of small problem, work-first scheduling 52
6.5 Performance of small problem, default scheduling, no spinning 53
6.6 Performance of small problem, distributed breadth-first scheduling, no spin-

ning . 53
6.7 Performance of small problem, work-first scheduling, no spinning 54
6.8 Performance with different task sizes, no spinning 54
6.9 Performance of large problem with different task sizes, 8 threads 55
6.10 Performance of small problem with different task sizes, 8 threads 55
6.11 Performance of large problem with task size 2048, DBF scheduling 56
6.12 Performance of small problem with task size 256, DBF scheduling 56
6.13 Performance of Black-Scholes at different problem sizes 57
6.14 Power dissipation with varying number of threads, Black-Scholes 58
6.15 Power dissipation, Black-Scholes . 58
6.16 GFLOPS/W, Black-Scholes . 59
6.17 Energy consumed for the whole problem, Black-Scholes 60
6.18 Normalized energy-delay products, Black-Scholes 60
6.19 Performance with different scheduling algorithms, FFTW 62
6.20 Performance with regards to number of threads, FFTW, N=225 62
6.21 Performance with regards to number of threads, FFTW, N=214 63
6.22 Performance of FFTW at different problem sizes 63
6.23 Power dissipation with varying number of threads, FFTW 64
6.24 Power dissipation, FFTW . 65
6.25 GFLOPS/W, FFTW . 66

xiv List of Figures

6.26 Energy consumed for the whole problem, FFTW 66
6.27 Normalized energy-delay products, FFTW . 67
6.28 Performance for various problem sizes, FFTW, Nanos++ 0.6a 68
6.29 Performance and standard deviation for matrix multiplication 69
6.30 Power dissipation and energy efficiency, matrix multiplication 70
6.31 Normalized energy consumption, matrix multiplication 71
6.32 Normalized energy-delay products, matrix multiplication 71

7.1 Predicted vs. Observed performance in Black-Scholes at different task sizes
using Nanos++ v. 0.7a . 74

7.2 Predicted vs. Observed performance in Black-Scholes at different task sizes
using Nanos++ v. 0.6a . 75

7.3 Main memory accesses . 76
7.4 Power usage without cores . 78

xiv

List of Tables xv

List of Tables

2.1 List of exascale applications targeted for porting to Mont Blanc (taken from
[1]) . 7

2.2 List of scientific libraries targeted for porting to Mont Blanc 7

4.1 Overview of the SYS_CFGCTRL register . 26
4.2 FFT benchmark arguments . 35

5.1 Hardware specifications for sif . 38
5.2 Cache information for Intel Core i7-2600, 3.4GHz 38
5.3 Hardware specifications for ARM development board 39
5.4 Third party software and libraries . 39
5.5 Compiler flags for software used in the thesis 40
5.6 Configure flags for third party software . 40
5.7 Statistical data from MSR consistency test . 43
5.8 Statistical data from consistency test of energy measurements on ARM 43
5.9 Performance counter metric composition of PAPI events 44
5.10 Floating-point operation counts for different kernels/functions 46

6.1 Result presentation order . 50

B.1 Black-Scholes, performance with eight threads, DBF scheduling, different
task sizes . 89

B.2 Black-Scholes performance, N=225, DBF scheduling, task size 2048 90
B.3 Black Scholes performance and energy, N=213, DBF scheduling, task size 256 91
B.4 Black Scholes performance and energy, DBF scheduling, no vectorization . . . 92
B.5 Black Scholes performance and energy, DBF scheduling, SSE optimized 93
B.6 Black Scholes performance and energy, DBF scheduling, AVX optimized . . . 94
B.7 FFTW performance and energy, N=225, default scheduling 95
B.8 FFTW performance and energy, N=214, default scheduling 96
B.9 FFTW performance and energy, default scheduling, no vectorization 97
B.10 FFTW performance and energy, default scheduling, SSE optimized 98
B.11 FFTW performance and energy, default scheduling, AVX optimized 99
B.12 Matrix multiplication performance and energy, default scheduling, AVX op-

timized . 99
B.13 Memory accesses per flop . 100

xvi List of Tables

G.1 Reserved keywords/variables in the experiment framework 120
G.2 Required member functions of test suites . 123

xvi

1

Chapter 1

Introduction

In this chapter, the motivation and goals for the thesis is presented, then the contribu-
tions from this work are outlined. Additionally, some terminology will be explained,
and an outline of the chapters is presented.

1.1 Motivation

Energy requirements is one of the major challenges for large supercomputers [2]. If
the most powerful supercomputer as per November 2011 were scaled to one exaFLOPS
without improving energy efficiency, it would require more than a gigawatt of power,
enough to power almost a million homes. Not only is this impractical due to the cost of
operation, but each component must also be cooled which also incurs a significant cost
in equipment and additional energy use, further increasing operational costs.

The Mont Blanc project is an EU project aimed at reaching the exaFLOPS milestone
by using energy efficient embedded accelerators, for instance the ARM Mali GPUs, in
order to get the energy efficiency of the computer up to a level where this is possible.
The first goal is 7 GFLOPS/W and a total performance of 50 petaFLOPS by 2014. For
2017, the goal is 20 GFLOPS/W by 2017, approaching the goal of 50 GFLOPS/W re-
quired for an exaFLOPS computer with a power budget of 20MW.

Although much of the improvement must come from advances in hardware, the
software also matters. Often, energy efficiency and performance are closely related, in
that higher performance often gives higher energy efficiency, given that the hardware
configuration stays the same. However, this may not always be true; in this project
it was found that vectorizing codes consumes little to no extra energy for a significant
performance boost, while multi-threading involves activating more cores, incurring sig-
nificantly higher energy usage.

This thesis is the result of the first in a series of research projects exploring energy
efficiency in modern computer architectures. First we present the results from strictly
on-chip energy usage, where most of the execution occurs on-chip with minimal in-
teraction from the memory system. Future research projects will measure the energy

2 CHAPTER 1. INTRODUCTION

consumption of the full computing system, before expanding to energy measurements
on multi-node computing clusters. The ultimate goal is to try to understand the energy
implications of every subsystem, and use that knowledge to develop methods for more
energy efficient computers, both through improvements in software and in hardware.

1.2 Thesis Scope and Goals

The goal of this thesis is to evaluate current hardware platforms with respect to energy
efficiency and performance using techniques like vectorization and multi-threading
with task based programming using OmpSs. The CPUs used in the experiments are
the Intel Sandy Bridge CPU Core i7 2600 and a development implementation of the
ARM Cortex-A9 MPCore quad-core CPU. The Sandy Bridge architecture is the latest
generation of Intel CPUs before Ivy Bridge, which was released in April 2012, and the
Cortex-A9 is relevant in many embedded devices like cell phones. Before evaluating
energy efficiency, the applications are first optimized for performance.

It is also of interest to compare the ARM and Intel platforms, in particular because
the Sandy Bridge is a relatively new architecture that is claimed to reach "new levels
of performance, flexibility and energy efficiency" by Intel [3], and ARM is relevant in
many mobile and embedded devices where energy efficiency is a key point.

1.3 Terminology

1.3.1 Performance Measurements and FLOPS

In this work, FLOPS with capital letters is used to refer to the rate of computation, i.e.
FLoating-point OPerations per Second. When talking about the quantity "number of
floating point operations", either "floating point operation(s)", or "flop(s)" in lower case,
is be used.

1.4 Contributions

The contributions of this work are:

1. Performance and energy efficiency results for three applications, Black-Scholes,
FFTW and matrix multiplication for both ARM Cortex-A9 MPCore test chip and
Intel Core i7 2600.

2. Comparisons of the energy efficiency for these two CPUs using the metrics energy,
GFLOPS/W, process-normalized energy-delay and energy-delay squared prod-
uct.

3. Models for performance in task-based programs based on task scheduling over-
head and memory overhead.

2

1.5. THESIS OUTLINE 3

4. A research paper presenting the Sandy Bridge results with the GFLOPS/W metric.
The paper is going to be published in the LNCS 7453 proceedings, and presented
at the EECS section of the ICT-GLOW 2012 conference. It is attached in appendix
H.

5. A benchmarking framework that was developed because of the large number of
benchmarks that was run and had to be managed throughout the writing of this
thesis. This framework is briefly described in appendix G.

The division of work for the research paper is as follows: Hallgeir Lien provided
the results, the research infrastructure and wrote several parts of the paper, especially
the discussion. Lasse Natvig provided the main paper structure, and wrote other parts
of the paper, using the then current version of Hallgeir Lien’s thesis as main source. Ab-
dullah Al Hasib started the work on energy measurements using MSRs and did some
contributions to the text, while Jan Christian Meyer acted both as scientific discussion
partner in the final stages of the work, and also helped improving the text before sub-
mission and for the camera ready copy. The work will be presented at ICT-GLOW in
September 2012.

1.5 Thesis Outline

This thesis is structured as follows. Chapter 2 gives a background in the central topics
of this paper: Mont Blanc, OmpSs, challenges in large supercomputers, heterogeneous
computing, vectorization (SSE, AVX and NEON), energy metrics, and related work.
Chapter 3 give an overview of the benchmarked applications, Black-Scholes, FFTW and
matrix multiplication. Chapter 4 explains the implementation details for each applica-
tion or benchmark. Chapter 5 covers methodology and experiment setup: Compiler
flags used, software versions, hardware, statistical metrics and how energy measure-
ments were performed. Chapter 6 presents the performance and energy efficiency re-
sults for all three applications, with some discussion of each result. Chapter 7 presents
a derivation of a model for performance where task creation and scheduling overheads
are taken into account, and a model estimating overhead of main memory accesses
for each application. Chapter 8 concludes with a summary of the main results, and a
conclusion. Appendix A presents the performance results for the ARM processor. The
appendix is restricted from publishing, so it is provided as an attachment to this report.

5

Chapter 2

Background

In this chapter background on the tools and programming models used will be given.
The Mont Blanc project is also presented. The chapter is organized as follows: Sec-
tion 2.1 gives an overview of exascale computing, the Mont Blanc project and its goals.
Section 2.2 gives an introduction to the OmpSs programming model developed at the
Barcelona Supercomputing Center and the relevance it has for this thesis. Section 2.3
explains the concepts behind SIMD and how this is implemented in the Intel Sandy
Bridge CPUs. Section 2.4 presents different metrics that are used for evaluating energy
efficiency. Lastly, section 2.5 gives an overview of related work and their results.

2.1 The Mont Blanc Project and Exascale Computing

A major milestone for supercomputers is hitting the exaFLOPS mark in performance.
Today’s most powerful supercomputer is rated to just over 10 petaFLOPS [4]. A hun-
dredfold improvement in performance is required to reach one exaFLOPS. This presents
a number of challenges. The Mont Blanc project, a part of the European Exascale Soft-
ware Initiative [5], is one of the projects trying to address some of the challenges in
exascale computing.

2.1.1 Challenges for exascale supercomputers

Developing an exascale supercomputer requires significant technological advances in
many areas [2]. For instance, the performance gap between memory, storage systems
and CPUs is growing [6]. If memory systems and interconnects are unable to scale with
the CPU development, bandwidth will be a serious bottleneck in an exascale computer.

Another challenge the supercomputing community is facing is the increased com-
plexity of writing software for large computing clusters in the presence of the CPU-
memory performance gap and heterogeneous systems. In order to minimize the per-
formance impact of data movement, it has proved useful to overlap computation with
communication time in clusters [7][8][9]. Some research has been conducted in automat-
ically taking care of this overlap through alternative programming models. Tarragon

6 CHAPTER 2. BACKGROUND

[10] developed at UC San Diego is one such approach that is an actor based execution
model where the programmer defines a partial ordering of tasks, and the runtime sys-
tem will then take care of scheduling these tasks on physical processors.

One of the most significant barriers that supercomputers face today is power dissi-
pation [2]. The most powerful supercomputer as of November 2011 as listed by the Top
500 website [4], K Computer at the RIKEN Advanced Institute for Computational Sci-
ences (AICS) in Japan, has a theoretical peak performance of 11.3 petaFLOPS and draws
12.66 megawatts of power, giving a energy efficiency of 0.89 GFLOPS/W. If we were to
scale this linearly up to one exaFLOPS, we get a power requirement of 1.12 GW. On
the other hand, using the most energy efficient supercomputer, the IBM BlueGene/Q,
Power BQC at the IBM Rochester site [11] uses 2.02 GFLOPS/W, giving a power re-
quirement of 495MW for one exaFLOPS. A more reasonable power budget is 20 MW
[12], which would require an efficiency of 50 GFLOPS/W, a 25x increase in energy effi-
ciency from the energy efficiency leader as per the Green500 list, November 2011 [11].

2.1.2 The Mont Blanc project

The Mont Blanc project, one of three projects under the European Exascale Software Ini-
tiative (EESI), is a project with the ultimate goal of building an exascale supercomputer.
Mont Blanc has three main objectives: [1]

1. Deploying a prototype HPC system based on existing energy efficient embedded
technologies, scalable to 50 petaFLOPS using only 7 MW of power, competitive
on the Green 500 list in 2014.

2. Designing a next-generation HPC system based on new embedded technologies,
overcoming some or most of the limitations of the previous generation. This sys-
tem will be scalable to 200 petaFLOPS at 10 MW, competitive for the Top 500 list
by 2017.

3. Porting and optimizing a small number of representative exascale applications for
use on this new system, as well as some important scientific libraries. A prelimi-
nary list of these applications can be found in table 2.1, and the libraries have been
listed in table 2.2.

As mentioned in the previous section, the most energy efficient supercomputer
per November 2011 according to the Green 500 list has an efficiency of 2.02 GFLOPS/W
[11]. However, the first objective of Mont Blanc is to achieve more than 7 GFLOPS/W,
more than tripling this efficiency. The next objective by 2017 is improving this to 20
GFLOPS/W, approaching the 50 GFLOPS/W goal required for an exascale supercom-
puter with a power budget at 20 MW. In order to achieve this kind of energy efficiency,
heterogeneous computing, i.e. offloading parts of the work to accelerators like graphics
processing units (GPUs), plays an important role. It is already known that in terms of
performance per watt, GPUs are highly efficient when fast on-chip memory is used, on
applications with high parallelism where a single operation is performed on many data
elements at a time [13]. Mont Blanc aims to use energy efficient accelerators like the

6

2.2. OPENMP SUPER SCALAR (OMPSS) 7

Application Description

YALES2 Fluid dynamics
EUTERPE Fluid dynamics
SPECFEM3D Seismic wave propagation
MP2C Multi-particle collisions
BigDFT Electronic structure
QuantumESPRESSO Electronic structure
PEPC Coulomb + gravitational forces
SMMP Protein folding
ProFASI Protein folding
COSMO Meteorological modeling
BQCD Quantum ChromoDynamics

Table 2.1: List of exascale applications targeted for porting to Mont Blanc (taken from
[1])

Library Description

ATLAS Automatically Tuned Linear Algebra Software. Provides high perfor-
mance BLAS (Basic Linear Algebra Subprograms) APIs for C and Fortran
[16]

FFTW Fastest Fourier Transform in The West. For computing Fast Fourier Trans-
forms [17]

HDF5 Hierarchical Data Format version 5. A file format and interfaces for storing
large amounts of numerical data [18]

LAPACK Linear Algebra PACKage. A library providing numerical linear algebra
routines, e.g. equation solvers and matrix decompositions [19]

MAGMA Magma Computational Algebra System. Computer algebra system for
solving problems in algebra, number theory, geometry and combinatorics
[20]

Table 2.2: List of scientific libraries targeted for porting to Mont Blanc

ARM Mali series of GPUs, which is often used in embedded devices like cell phones
[14]. These devices are not designed for HPC and have never been used for such, which
is one challenge that the Mont Blanc project aims to address [15].

2.2 OpenMP Super Scalar (OmpSs)

OpenMP (Open Multi-Processing) is a widely used application programming inter-
face for multi-threaded applications in shared memory computers. Compared to many
other APIs like pthreads or MPI, OpenMP requires little extra code for adding multi-
processing to the program, which increases the programmer’s productivity compared
to those other APIs [21]. However, OpenMP is usually implemented for shared-memory
multiprocessors, and those implementations cannot be used across nodes in a super-
computer without a virtualization layer like e.g. vSMP [22], or for accelerators like
GPUs.

8 CHAPTER 2. BACKGROUND

For computing clusters, MPI has been the de facto standard programming model,
and for GPUs or accelerators, both CUDA, for NVIDIA GPUs, and OpenCL are widely
used. However, these programming models involve additional work for the program-
mer with memory allocation, data movement, device queries, error handling, and so on.
As supercomputers grow, this process gets more difficult, which distracts the program-
mer from the productive work of actually implementing the kernels. There has been
some research on programming models to handle heterogeneous architectures, like the
Mint programming model and OpenMPC [23][24]. However, those approaches are spe-
cialized on only one architecture (NVIDIA GPUs), and they are only efficient on certain
types of kernels.

OpenMP Super Scalar (OmpSs for short) is a task-based programming model de-
veloped at the Barcelona Supercomputing Center (BSC). The goal of OmpSs is to ad-
dress the issue of complexity in the development of applications for computing clusters
and heterogeneous architectures by providing extensions to OpenMP [25].

2.2.1 Task-based programming

This section will attempt to explain the purpose of and need for task-based program-
ming.

In OpenMP, the programmer would create a parallel region where threads are
spawned, and divide the work into tasks or work sharing constructs. For instance,
in order to parallelize a SAXPY operation

~y := a~x+ ~y (2.1)

the programmer could use one of the kernels in listing 2.1. These two approaches give
the same results, although the internals of how the work is divided among the threads
are different.

In the first code example the work in the for-loop is simply split between the
threads. A default scheduling policy for work sharing is defined by the implementa-
tion, though a scheduling policy can be explicitly set.

In the second example, each iteration of the for-loop is defined as an independent
task. Each task is then assigned to a thread by a task scheduler. The advantage of using
tasks is that it is more dynamic; say that you have an implementation of merge sort that
should be parallelized. Merge sort is a recursive sorting function, each call to merge
sort calls the merge sort function on two halves of the input recursively. This is hard
to accomplish using traditional work sharing, since the work is generated recursively.
Using tasks, parallelization of such recursive routines is easily expressed by defining
each call to merge sort as an independent task.

When writing OmpSs code for SMPs the code for the SAXPY routine is very similar
to the task-based OpenMP code, but without the #pragma omp parallel block. The
reason for this is that in OmpSs, the #pragma omp parallel block is implied threads
are spawned when the application launches, so the parallel construct is redundant [25].
Listing 2.2 shows the code that runs with OmpSs. As with OpenMP, tasks are cre-
ated with the #pragma omp task construct. These tasks are then scheduled to be exe-

8

2.2. OPENMP SUPER SCALAR (OMPSS) 9

Listing 2.1 Multi-threaded SAXPY in OpenMP

1 void saxpy_worksharing(float* x, float* y, float a, int N) {
2 #pragma omp parallel for
3 for (int i = 0; i < N; i++) {
4 y[i] = y[i]+a*x[i];
5 }
6 }

(a) SAXPY in OpenMP with work sharing

1 void saxpy_tasks(float* x, float* y, float a, int N) {
2 #pragma omp parallel
3 {
4 for (int i = 0; i < N; i++) {
5 #pragma omp task
6 {
7 y[i] = y[i]+a*x[i];
8 }
9 }
10 }
11 }

(b) SAXPY in OpenMP with tasks

cuted on one of the threads. Note that work sharing can also be used in OmpSs like in
OpenMP, but without the parallel directive.

Listing 2.2 Multi-threaded SAXPY in OmpSs

1 void saxpy_ompss(float* x, float* y, float a, int N) {
2 for (int i = 0; i < N; i++) {
3 #pragma omp task
4 {
5 y[i] = y[i]+a*x[i];
6 }
7 }
8 //wait for all tasks to complete (synchronization point)
9 #pragma omp taskwait
10 }

2.2.2 Heterogeneous capabilities

OmpSs can generate code for symmetric multiprocessors and thus function like tra-
ditional OpenMP, but it also supports creating tasks containing code for accelerators
using CUDA and OpenCL, as well as Cell processors. The programmer still needs to
write device-specific code, but details like data movement, device queries and setup is
either hidden from the programmer, or simplified to simple directives.

Instead of having the programmer managing data movement on a device-specific
level, OmpSs provides extensions to indicate what data needs to be moved into and
out from the device(s) and any dependencies using the directives inout, input and
output. For instance, listing 2.3 shows the program outline of SAXPY for both SMPs
and OpenCL.

10 CHAPTER 2. BACKGROUND

Listing 2.3 Heterogeneous OmpSs program

1 const int NB = 16;
2

3 #pragma omp task inout ([NB] y) input ([NB] x)
4 void saxpy_block (float* x, float* y, float a)
5 {
6 //SMP specific kernel code for computing y = y + ax for a block of size NB
7 }
8

9 #pragma omp target device (cell) copy_deps implements (saxpy_block)
10 void saxpy_block_cl (float* x, float* y, float a)
11 {
12 //OpenCL specific kernel code
13 }
14

15 void saxpy(float* x, float* y, float a, int N)
16 {
17 for (int i = 0; i < N; i+= NB)
18 {
19 //Generate the OmpSs tasks
20 saxpy_block(x+i, y+i, a);
21 }
22 #pragma omp taskwait
23 }

2.2.3 Nanos++ and Mercurium

In the implementation of OmpSs used in this work, developed by BSC, the Nanos++
runtime system is used for task creation and scheduling. Mercurium is a source-to-
source translator that takes the source code as input and translates all OmpSs #pragma
omp directives into calls to the Nanos++ runtime.

2.2.4 OmpSs in Mont Blanc

OmpSs is targeted for use in the Mont Blanc project [1] and has been successfully used
in a cluster environment [26]. A computer built on low power devices requires a higher
number of computing cores than traditional CPUs in order to achieve the same perfor-
mance, and the Mont Blanc prototypes will also be using accelerators like GPUs. Both
of these points introduce complexities in the code that OmpSs attempts to address. It
is as of yet uncertain if OmpSs will be used instead of, or in addition to MPI (Message
Passing Interface) in Mont Blanc.

2.2.5 Task scheduling and scheduling algorithms

In OmpSs, threads are spawned as soon as the application starts. The main thread runs
serially through the program, and once a task is found, it adds this task to a shared
task pool. The inactive worker threads then takes tasks from this pool, puts them into
its own private pool of tasks and starts executing them [25]. The worker threads then
selects tasks to execute based on the scheduling algorithm that is used.

Some scheduling algorithms utilize work stealing. These algorithms can steal
tasks from other thread’s private task pools. This can help in instances where the load

10

2.3. SINGLE INSTRUCTION, MULTIPLE DATA (SIMD) 11

balance is uneven, but may suffer from less optimal memory locality.

The scheduling algorithm for OmpSs controls which tasks are executed by which
thread, which order they are executed in and when they are executed. The choice of the
scheduling algorithm can significantly affect the performance of applications in task-
based programs [27], both because of memory locality issues, and because of how the
tasks are generated. A breadth first algorithm generates all the tasks in the current
recursion level before executing them, while a depth-first algorithm does a depth-first
traversal of the tasks, and starts executing once the scheduler reaches the bottom-level
task.

The default scheduling algorithm in the Nanos++ runtime was found to be depth-
first by inspection of the Nanos++ source code. In addition to the default algorithm,
distributed breadth-first and work-first will be considered in this thesis. Distributed
breadth-first is breadth-first with work stealing. Work-first is depth-first with work
stealing.

In chapter 6 we see that choosing the right scheduler for the application has a
significant impact on performance.

2.3 Single Instruction, Multiple Data (SIMD)

In recent years, there has been considerable focus on parallelization of software due to
the fact that the performance of single core CPUs at some point will reach a wall due
to power, instruction level parallelism and memory bandwidth[28][29][30][31]. Increas-
ing the operating frequency of a CPU usually comes with an increase in voltage, and
because power is given by [32]

P = Cv2f (2.2)

where C is the capacitance, v is the voltage and f is the frequency. We see that simply
increasing the operating frequency, and thus also voltage, is not a sustainable strategy
as it would at some point be impractically expensive to keep the chip cool enough.

If frequency stays constant, any increase in performance per processor core must
come from an increase in work being done per clock cycle. This can be achieved by
having each core execute more instructions per clock cycle, or letting each instruction
process more data. The first point is achieved by pipelining the execution of instruc-
tions; however, due to data dependencies between instructions, this approach has lim-
its. Introducing vector capabilities is another way of adding more computing power
to a CPU core without increasing the frequency. In simplest terms, a CPU capable of
vector operations can perform a single operation on multiple data elements at a time,
thus is classified as Single Instruction, Multiple Data in Flynn’s taxonomy, or SIMD for
short.

Although CPUs have traditionally been used for general purpose computing, Graph-
ics Processing Units (GPUs), which traditionally has been purely used for graphics, are
now used in scientific applications due to their enormous computing power. GPUs typ-
ically get their computing power from vectorization; modern GPU architectures like
NVIDIA Fermi uses vector lengths of up to 1024 bits (32 single-precision floating point

12 CHAPTER 2. BACKGROUND

values) [33], with tens of vector cores performing vector operations in parallel. These
GPUs are typically slow on serial operations, so they are limited as a general purpose
processor, and also due to the overhead of transferring data to and from the device
memory. However, embedded low-power GPUs like the NVIDIA Tegra and ARM Mali
GPUs operate with far fewer computing cores [34]. The ARM Mali can also directly ac-
cess the host’s main memory, so the datasets does not need to be explicitly transferred
to the device. The NVIDIA Tegra and ARM Mali GPUs are both candidates for use in
Mont Blanc [1].

Many modern processor architectures, for instance Intel Sandy Bridge and its pre-
decessors, and the ARM Cortex series of CPUs are capable of doing vector operations on
128-bit vectors. x86 CPUs usually implement Streaming SIMD Extensions (SSE) instruc-
tions [35], while ARM CPUs often implement Advanced SIMD Extensions (NEON). In
theory, these technologies can give up to four times speedup in execution from non-
vectorized code for single precision, or two times speedup for double precision1. The
newest x86 processors, like the Intel Sandy Bridge and Ivy Bridge, and AMD Bulldozer
has support for Advanced Vector Extensions [3], which double the size of the vectors to
256 bits, giving a theoretical speedup of two compared to SSE, and up to eight compared
to code not optimized for vector operations for single precision.

2.3.1 Streaming SIMD extensions (SSE)

SSE, designed and introduced by Intel in 1999, is implemented in modern x86-based
CPUs today. SSE is based on the older MMX instruction set with 64 bit registers intro-
duced in 1996. The original SSE implementation had most of the basic floating point
operations like addition, multiplication, data shuffling, bitwise operations and more for
128 bit registers. SSE2 brought 128-bit integer arithmetics, where SSE1 used the older
64-bit MMX registers for integer operations. SSE3 introduced the capability of work-
ing horizontally within a register in only a single instruction, e.g. horizontal reductions
({A0, A1},{B0, B1} ⇒ {A0 + A1, B0 + B1}, whereas vector operations traditionally are
performed in a vertical fashion. SSE4 is the latest addition and adds instructions like
dot products, min/max, blending, and more.

SSE SIMD instructions are similar to scalar instruction like fadd, fmul, etc., ex-
cept they work with larger registers and multiple data elements at once. For instance,
the vector instructions movps and addps corresponds to the scalar instructions for data
movement and floating point addition mov and fadd. The vector instructions are per-
formed on all four (or two, if double precision) elements in the vector in one operation.

In SSE there are 128 bit registers called xmm0 through xmm7; for 64-bit architectures
(AMD64, Intel 64), there are eight additional registers xmm8 through xmm15. Typically,
the programmer does not need to worry about registers as these are chosen by the com-
piler.

When creating programs in C that use SSE, there are three typical ways of vector-
izing the code:

1Note that NEON does not support double precision, so this only applies to SSE

12

2.3. SINGLE INSTRUCTION, MULTIPLE DATA (SIMD) 13

1. Writing inline assembly. This is often hard to read, and gives the compiler little
room for optimization, but gives the programmer complete control of the code.

2. Telling the compiler to create vector code automatically. This works well in some
cases where it’s easy to spot e.g. loops suitable for vectorization, but it is often
hard for the compiler to spot code that can be vectorized.

3. Using intrinsics, which is basically wrappers around the assembly for the instruc-
tions. This gives the programmer close to total control while also giving the com-
piler the opportunity of optimizing, e.g. moving instructions around to maximize
register use.

Listing 2.4 SAXPY in SSE

1 void saxpy_sse(float* x, float* y, float a, int N) {
2 __m128 _a = _mm_set1_ps(a);
3 for (int i = 0; i < N; i += 4) {
4 __m128 _x = _mm_loadu_ps(&x[i]),
5 _y = _mm_loadu_ps(&y[i]);
6 _y = _mm_add_ps(_y, _mm_mul_ps(_a, _x));
7 _mm_storeu_ps(&y[i]);
8 }
9 }

Listing 2.4 shows a simple program that performs SAXPY defined in Equation 2.1
using SSE intrinsics.

2.3.2 Advanced Vector Extensions (AVX)

In 2008, Intel proposed the Advanced Vector Extensions (AVX), as a successor to SSE,
with twice as large vector registers for theoretically twice the throughput for vector
operations compared to that of SSE. As of writing this thesis, Intel’s Sandy Bridge and
Ivy Bridge-series, and AMD’s Bulldozer processors support AVX. AVX instructions are
very similar to SSE, except they work with larger vectors.

AVX registers are extensions of the SSE registers, reusing the 128 bit registers and
adding another 128 bits on top of the xmm* registers [36]. AVX registers are named the
ymm registers.

Listing 2.5 SAXPY in AVX: y[i] := ax[i]+y[i]

1 void saxpy_avx(float* x, float* y, float a, int N) {
2 __m256 _a = _mm256_set1_ps(a);
3 for (int i = 0; i < N; i += 8) {
4 __m256 _x = _mm256_loadu_ps(&x[i]),
5 _y = _mm256_loadu_ps(&y[i]);
6 _y = _mm256_add_ps(_y, _mm256_mul_ps(_a, _x));
7 _mm256_storeu_ps(&y[i]);
8 }
9 }

14 CHAPTER 2. BACKGROUND

Programming with AVX is very similar to programming with SSE: Intrinsics, inline
assembly or automatic vectorization can be used. Listing 2.5 shows a programming
example with SAXPY, similar to that in section 2.3.1. As we see, the code is nearly
identical, just with larger vectors and slightly different names for the intrinsics.

Transition between SSE and AVX

The SSE xmm registers is actually the lower half of the ymm registers used in AVX. At-
tempting to write to any of the xmm registers after writing to the ymm registers will make
the CPU store the contents in the ymm registers to memory before allowing the xmm regis-
ter to be written, and then writing it back again. This is costly and is called an AVX-SSE
transition penalty [36].

Some compilers, e.g. gcc, generates SSE code automatically if it finds a candidate
for optimization. This can trigger an AVX to SSE transition penalty, slowing down the
execution of the SSE code significantly. To avoid AVX-SSE transition penalties, the in-
struction VZEROUPPER can be invoked to clear the upper halves of the ymm registers after
use. This makes sure SSE code will not trigger the protection mechanism, as the CPU
will know that the register is free. A corresponding intrinsic exists in gcc and icc,
_mm256_zeroupper().

2.3.3 ARM Advanced SIMD Extensions (NEON)

Advanced SIMD Extensions, also called NEON, is the SIMD architecture present in the
ARM Cortex CPUs. NEON operates on 64-bit or 128-bit vectors containing elements of
size 8, 16 or 32 bits. However, in contrast to SSE, NEON does not have 128-bit registers.
Instead, two 64-bit registers are used to hold one 128 bit vector [37]. As a result, most
vector arithmetics involving 128-bit vectors are performed separately for each of the
64-bit D registers holding the operands. This is also indicated by the timings for each
instruction given at the ARM Infocenter website section for the Cortex-A9 architecture
[38]. Consequently, the potential speedup for NEON is lower than that of SSE, because
most single-precision floating point operations can only be performed on two floats per
cycle.

Listing 2.6 SAXPY in NEON: y[i] := ax[i]+y[i]

1 void saxpy_neon(float* x, float* y, float a, int N) {
2 float32x4 _a = vdupq_n_f32(a);
3 for (int i = 0; i < N; i += 8) {
4 float32x4 _x = vld1q_f32(&x[i]),
5 _y = vld1q_f32(&y[i]);
6 _y = vaddq_f32(_y, vmulq_f32(_a, _x));
7 vst1q_f32(&y[i]);
8 }
9 }

Programming with NEON is similar to programming with AVX or SSE, although
with different instructions. Intrinsics, inline assembly, and automatic vectorization are

14

2.4. ENERGY EFFICIENCY METRICS 15

available in gcc. An example of SAXPY using NEON intrinsics in gcc is given in listing
2.6.

2.4 Energy Efficiency Metrics

This section discusses different metrics for energy efficiency. Energy, power, GFLOP-
S/W, the energy-delay product and energy-delay squared product are discussed.

2.4.1 Energy and power

Energy is measured in Joules, and power in Joule/second or Watts. Knowing the power
dissipation for different optimization methods (e.g. SIMD, or multi-core) reveals infor-
mation about the energy cost of the different methods.

2.4.2 GFLOPS/W

It is interesting to note that using the terminology from section 1.3, the metric FLOPS/W
is equivalent to flops/J , because FLOPS/W = (flops/s)/(J/s) = flops/J . Additionally,
if the problem size, and then also # flops, is fixed, FLOPS/W is simply the reciprocal
of the total energy spent scaled by a constant, i.e. the # floating point operations. This
means that when GFLOPS/W is at a maximum, the energy spent is minimal, and vice
versa.

The article "Models and Metrics to Enable Energy-Efficiency Optimizations" [39]
discusses different metrics for energy efficiency. For instance, the authors propose the
JouleSort benchmark, which measures the number of records that can be sorted per
joule. This is similar to the metric flops/Joule, which is equivalent to FLOPS/W used in
the Green500 lists as the measure of energy efficiency [11]; both measure the amount of
work done per unit of energy, although the quantities are different (# elements sorted,
and # flops).

2.4.3 Energy-delay products

Power dissipation is given by equation 2.2, and since v is also dependent on f , reducing
the frequency allows us to also reduce the core voltage, and thus the power. How-
ever, even though this would likely increase the FLOPS/W value, and reduce the total
energy spent, the performance may be much lower. Horowitz et. al [40] proposed
the energy-delay product to address this issue, which is defined as Energy × Delay,
often abbreviated as EDP. Because both power and performance is related to clock fre-
quency and voltage, the idea is that the EDP would reveal the energy efficiency of the
underlying processor design instead of having a metric directly dependent on the clock
frequency [39].

16 CHAPTER 2. BACKGROUND

Energy-delay squared

Martin et. al proposed a generalization of the energy-delay product on the formEnergy×
Delayn [41]. Here, n can be chosen emphasize performance in the energy-delay product.
n = 2 is discussed thoroughly in the article as a reasonable choice for many applications.
The article argues that the traditional EDP is not sufficient to compare implementations
when voltage scaling is involved. It gives an example with a log and linear implemen-
tation of a comparator, where the energy usage of the log comparator is higher than the
linear one if the voltages are the same, giving a higher EDP even if the delay is lower.
However, when the voltage of the log comparator is scaled so that the delay matches
that of the linear one, the energy spent is lower, and thus it is revealed that the log im-
plementation is better. The ED2 metric reveals this even if the voltages are the same.
ED2 is sometimes abbreviated to as EDD.

Technology scaling: Process-normalized EDP and EDD

If the transistor size due to the manufacturing process is scaled by a factor of λ, under
ideal conditions, the energy-delay product is scaled by λ4 [40]. In the paper "Energy
dissipation in general purpose microprocessors" [42], the authors argue that because
the processor speed is limited by other factors like the memory system, and that there
is a threshold voltage that cannot be subsided in order for the processor to function, the
EDP scaling factor likely lies between λ2 and λ3. The process-normalized EDP can then
be given as

EDPnormalized =
Energy ×Delay

λs
(2.3)

where s is the scaling factor and 2 ≤ s ≤ 4. In [42], λ2 is used as the scaling factor in the
processor comparisons, which is considered the lower-bound for the scaling factor [40].

Horowitz et. al. [40] state that the delay and energy is each reduced by a factor of λ
due to reduced capacitance alone if the transistors are scaled with a factor λ. Although
no papers defining a reasonable normalization factor for EDD was found, we will make
an attempt to derive one. Since the EDD is simply EDP×Delay and if the normalization
factor for the EDP is λs, we will use the normalization factor λs+1, as it simply counts
the factor due to the delay twice. This gives the normalized EDD

EDDnormalized =
Energy ×Delay2

λs+1
(2.4)

2.5 Related Work

In this section we present a selection of research papers, white papers and online re-
sources related to the thesis.

2.5.1 The Energy Efficiency of CMP vs SMT for Multimedia Workloads

Sasanka et. al compares the energy efficiency of chip multiprocessors (CMP) and single-
core processors utilizing simultaneous multi-threading (SMT) when applied to multi-

16

2.5. RELATED WORK 17

media applications [43]. The authors models a dual-core and quad-core CMP, and two
different SMT processors supporting two and four simultaneous threads, respectively.
They use the normalized energy per instruction as the energy metric, and time per in-
struction for performance. CMPs are found to be more energy efficient; the dual-core
use 9% less energy on average and the quad core use 39% less energy compared to SMTs
with two and four threads, respectively.

A hybrid model with SMTs as cores in a CMP is also modelled, which is shown
to use 11% more energy on average compared to the CMP. Intel multi-core processors
with hyper-threading uses this hybrid model.

2.5.2 Energy per Instruction Trends in Intel®Microprocessors

Grochowski et. al presents an overview of the trend of the energy consumption per
instruction (EPI) in Intel processors from the 486 to the Intel Core Duo family [44]. The
performance and energy is process-normalized in order to remove the factor of transis-
tor size. The authors show a strong increase in the EPI up to the Pentium 4 Willamette
processor with an EPI of 48nJ , and then almost an equally strong decrease down to an
EPI of 11nJ for the Core Duo Yonah. As a comparison, the 486 processor is stated to
have an EPI of 10nJ .

2.5.3 Evaluation of OpenMP Task Scheduling Strategies

A part of this thesis is dedicated to finding a good scheduling algorithm for the bench-
marked applications. A. Duran et.al shows that in many applications, the work-first
algorithm works best [27]. The work-first algorithm attempts to follow the serial execu-
tion pattern of the application, and thus exploits memory locality that would be present
as if the application were to be run serially. Breadth-first is another scheduling scheme
where all tasks for the current recursion level is put in the task pool before execution
of the tasks on the next recursion level commences. The authors finds that breadth-first
algorithm is inferior to work-first in most of their benchmarks.

In this project, a different set of applications are benchmarked, and using OmpSs
instead of OpenMP. The results in [27] are relevant and used as a guideline for what
schedulers should be explored.

2.5.4 Parallelization of Black-Scholes and dense matrix-matrix multiply us-
ing OmpSs

A. Duran et.al "OmpSs: A Proposal For Programming Heterogeneous Multi-Core Ar-
chitectures" [25] presents results from performance benchmarks for both Black-Scholes
and matrix-matrix multiply where OmpSs is used. The CPU-version of the matrix-
matrix multiply algorithm performs at 4 GFLOPS with four cores for most problem
sizes. For Black-Scholes, no absolute performance numbers are presented; instead, the
paper presents speedups from increasing the number of threads. The speedups pre-
sented are against the serial version that does not use OmpSs. One thread using OmpSs
tasks achieve 2.6x speedup due to the SIMD OpenCL kernel that is generated. For four

18 CHAPTER 2. BACKGROUND

threads, the speedup is 10, or 3.84 compared to the single threaded OmpSs implemen-
tation. The paper does not present energy efficiency results, which is the goal of this
thesis.

2.5.5 Benchmarking of FFTW

The FFTW library is extensively benchmarked in terms of performance on a variety of
platforms [45][17][46]. The results show that FFTW has a definite peak around where
the problem fits in the faster caches of the CPU, after which the performance drops.
These papers presents impressive performance results for single-threaded execution
versus other popular FFT algorithms, however no results was found on power con-
sumption on different devices. Also, no benchmark was presented for newer processors
using more than one core.

2.5.6 Energy efficiency of IRAM architectures

Fromm et. al. presents energy efficiency models for IRAM architectures, where DRAM
is integrated on the processor chip [47]. Because the DRAM is present on-chip, the au-
thors argue that the energy consumption is reduced compared to using a traditional
off-chip DRAM memory system. The authors found that the energy consumption of
IRAM systems is significantly lower than systems using a conventional memory hierar-
chy. The paper uses the metric energy per instruction metric in the results.

2.5.7 Green500

Green500 is a ranking website for energy-efficient supercomputers [11]. The site ranks
the machines listed in the Top500 list by energy efficiency using GFLOPS/W, where
the performance is measured using LINPACK, and the power is measured off the same
benchmark. The Green500 Run Rules list specific guidelines and rules for how the mea-
surements must be made [48]. As of November 2011, the top ranking computer is the
IBM BlueGene/Q, Power BQC with 2.02 GFLOPS/W.

2.5.8 Energy-saving mobile processor architectures

Goulding-Hotta et. al. presents an alternative to the traditional general purpose proces-
sor used in devices running the Android operating system [49]. The authors estimate a
91% reduction in energy consumption by using specialized circuits for commonly used
functionality, like Fast Fourier Transforms or JPEG decompression. The reductions are
possible because these chips do not need a instruction fetch/decode unit, instruction
cache, register file or a generalized data path.

18

19

Chapter 3

Application Kernels

This chapter gives an overview of the application kernels that was chosen for bench-
marking in this thesis.

Section 3.1 describes the Black-Scholes model and the application kernel, while
section 3.2 gives a short description of fast Fourier transforms and their applications, as
well as the FFTW library. Section 3.3 gives a brief overview of the matrix multiplication
kernel.

3.1 Black-Scholes (BSOP)

In this section the Black-Scholes model is explained. Black-Scholes were chosen because
it has previously been benchmarked as an OmpSs application, and is part of the PAR-
SEC Benchmark Suite for shared memory computers [50]. The Black-Scholes model
is a mathematical model of a financial market, describing the price of an option over
time [51]. An option in the financial sense of the word is a contract of selling and buy-
ing some underlying asset where one of the parties are obligated to sell/buy the asset,
while the other party is not. This has financial value, as the party that is not obligated
to do anything may choose whatever is most beneficial for him or her, even if that in-
volves a financial loss for the other party. This price is what the Black-Scholes model
attempts to model. The Black-Scholes equation is the partial differential equation given
in equation 3.1.

δV

δt
+

1

2
σ2S2 δ

2V

δS2
+ rS

δ2V

δS
− rV = 0 (3.1)

where

S is the price of the underlying stock.

V (S, t) is the price of a option.

r is the annual risk-free interest rate.

σ is the volatility of the stock’s returns.

t is the time, in years.

From this differential equation, the Black-Scholes formula can be derived, which
describes the price of European-style call and put options. A call option is an option

20 CHAPTER 3. APPLICATION KERNELS

where the seller is required to sell if the buyer wants to buy, but the buyer is free to not
buy the asset. A put option is the opposite, where the buyer is required to buy if the
seller wants to sell the asset, but the seller may choose wether or not to sell. European
style options are options that must be exercised at the time of maturity, i.e. the agreed
point in time for the trade. As a contrast, American style options can be sold/bought
at any point in time up until the time of maturity. The Black-Scholes formula is derived
by setting the appropriate boundary conditions, and is shown in equations 3.2 through
3.5. The derivation of the formula is outside of the scope of this thesis but can be found
in [51].

C(S, t) = N(d1)S −N(d2)Ke
−r(T−t) (3.2)

P (S, t) = N(−d2)Ke−r(T−t) −N(−d1)S (3.3)

d1 =
ln S

K + (r + σ2/2)(T − t)
σ
√
T − t (3.4)

d2 =
ln S

K + (r − σ2/2)(T − t)
σ
√
T − t

= d1 − σ
√
T − t (3.5)

Here, the function N is the cummulative distribution function of the standard normal
distribution, T − t is the time to maturity (the option matures at time T), and K is the
strike price. The functions C and P is the call and put option prices, respectively. The
rest of the symbols are explained after equation 3.1.

The formula can be trivially evaluated in parallel by computing the value of the
options at each point of time t in parallel. The implementation of the Black-Scholes
kernel is more thoroughly explained in chapter 4.

3.2 Fastest Fourier Transform in the West (FFTW)

This section describes the FFTW library that is used for benchmarking in this thesis.
FFTW is a relevant library for many scientific applications, and is one of the libraries
targeted for porting to Mont-Blanc. There has been considerable research in the area
of discrete Fourier transforms, especially fast Fourier transforms (FFT). FFT is a very
important class of algorithm, and its applications are seemingly endless: filtering (e.g.
filtering noise, or doing high/low pass filtering) in both signal processing, image pro-
cessing [52]; solving linear equations [53]; multiplication of large numbers [54], and
more.

The discrete Fourier transform transforms a signal from the time or space domain
to the frequency domain; this allows for a different view of the signal, for instance, in-
stead of seeing periodic noise in an audio signal, we would see a peak in the frequency
spectrum at the frequency of the signal. For instance, consider the signal in figure 3.1a.
Here there is a signal with high-frequency noise added. If we apply a Fourier trans-
formation on this signal and plot the amplitude of each frequency, we get the curve in
figure 3.1b. We see that there are two peaks: One in the low frequency area (near zero
on the x-axis, more specifically at about 1.27Hz), as well as one further out, at about
32Hz. That is the peak for the high-frequency noise.

20

3.2. FASTEST FOURIER TRANSFORM IN THE WEST (FFTW) 21

0 2 4 6 8 10
Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Am

pl
itu

de
Noisy signal

(a) Signal with respect to time

0 10 20 30 40 50
Frequency (Hz)

0

50

100

150

200

250

300

350

400

450

Am
pl

itu
de

/fr
eq

ue
nc

y

Fourier transformed signal

(b) Fourier spectrum

Figure 3.1: Sine wave with high frequency noise

Setting the values of the high-frequency interval (roughly 32Hz ± 10Hz) to zero
for the transformed curve, and then performing an inverse transform yields the noise-
reduced signal in figure 3.2.

0 1 2 3 4 5
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

Am
pl

itu
de

Filtered signal

Figure 3.2: Sine wave with noise filtered out

Computing the discrete Fourier transform naively takes O(n2) time for n elements
[55], which is too slow to be practical for many applications. However, the Fast Fourier
Transforms is a class of algorithms designed to find the discrete Fourier transform in
only O(n log n) time [55]. It works by subdividing the problem into smaller pieces, e.g.
splitting the input in half, and computing two smaller DFTs, which may be split further.
We will not go deeper into the theory of FFTs as that is outside of the scope of this work.

The FFTW library is a library made for efficient computation of the Fourier trans-
form and its inverse. It is regarded as one of the most efficient FFT libraries as it au-
tomatically tunes the algorithm to the machine it’s run on, by first creating a plan of
execution for the given problem, and then executing that plan. The plan is created by
using some heuristics to adapt execution to the current system (e.g. querying the cache
sizes), and also executing many different plans to find the best one. The plans may be

22 CHAPTER 3. APPLICATION KERNELS

saved to disk for reuse on other problems. Optionally, the measurement part may be
left out to save time on creating the plan, yielding a less optimal plan for execution.

The FFTW plans contain information about how to most efficiently recursively
subdivide the problem, and also how to most efficiently solve the base cases. The base
cases are sufficiently small problems that can be solved directly using a series of small
highly optimized code segments called codelets. When the plan is executed, the problem
is subdivided according to the plan. Then, codelets are executed for each of the base
cases.

3.3 Dense General Matrix-Matrix Multiplication and ATLAS

Matrix multiplication is a fundamental linear algebra operation which is used as a
building block in many scientific applications.. It is also a popular application for
benchmarking due to its very high floating point operations-to-memory access ratio
in the blocked implementation of this algorithm. Matrix-matrix multiplication is a level
3 BLAS (Basic Linear Algebra Subprograms) routine, and is generalized to

C = αAB + βC

where A, B and C are matrices with dimensions m × k, k × n and m × n, respectively.
The naive way of computing AB is simply calculating

Cij =
k∑
l=1

AilBlj (3.6)

which can be implemented in three simple nested for-loops. Equation 3.6 implies 2mnk
floating point operations in total (k additions of k multiplications, mn times) for com-
putingCij for every i and j. However, the naive algorithm typically performs poorly on
large matrices because it does not exploit cache locality, and thus gets low reuse of data
for matrices that are too big to fit in cache. Instead, matrix multiplication can be imple-
mented in a blocked fashion, where the matrices are divided into blocks that themselves
fit in cache, and then perform block-wise multiplication. Blocked matrix-matrix multi-
ply gives a much better cache reuse, and consequently better performance.

Without loss of generality, assume that A, B and C are square, with dimensions
n× n. Let the blocks have dimensions b× b, and let b and n be chosen so that b divides
n evenly. Define N to be n/b, i.e. the number of block rows and columns in M , and let
MIJ denote the Jth block column in the Ith block row of M , where M is A, B or C.
Then blocked matrix-matrix multiplication can be defined as

CIJ =

N∑
L=1

AIKBLJ (3.7)

Each block-block multiplicationAIKBLJ can be computed using the naive matrix-matrix
multiplication in equation 3.6. It is important to note that the total number of floating
point operations performed in the blocked algorithm is the same as in the naive calcula-
tions, i.e. 2N3. This algorithm is generalized to non-square matrices where m 6= k 6= n

by choosing the block size a× b for A and b× c for B.

22

3.3. DENSE GENERAL MATRIX-MATRIX MULTIPLICATION AND ATLAS 23

With blocks of size b × b, each element in A and B may have to be loaded N/b

times from potentially slow memory, as opposed to N times without blocking. The
total number of elements in A and B are 2N2, so the total number of loads from slow
memory, ignoring cache line sizes, is 2N3 for the unblocked algorithm, and 2N3/b for
the blocked algorithm. For the naive algorithm, the flops per memory access ratio is 1,
while for the blocked algorithm, b flops can be done per slow memory access. In other
words, the amount of reuse of each data element is b; the larger blocks, the more reuse.
This can be utilized to have a hierarchy of blocked matrices, where the block sizes in
each are made to fit each level of cache, giving a highly efficient matrix multiplication
algorithm.

ATLAS is an auto-tuned BLAS implementation, that automatically selects the best
performing kernels for the different BLAS routines, including matrix multiplication
[16]. The parameters for the kernels, like the block size, are chosen according to the
physical parameters for the machine like cache size, and several different kernels are
tried out to find the best one for the architecture. This is all done during compile time.
As a result of that auto-tuning, ATLAS is known to have a high performance on a wide
range of architectures.

25

Chapter 4

Implementation

4.1 Energy Measurement Algorithms

In this section, we present the algorithms used for measuring the consumed energy
for both Sandy Bridge and the ARM Cortex-A9 MPCore CPU. For Sandy Bridge, the
consumed energy can simply be read out from a register, while on ARM, the power
dissipation must be measured at regular intervals before the energy consumption is
found by numerical integration.

4.1.1 Sandy Bridge

For energy measurements on the Sandy Bridge, code based on the utility program
rdmsr is used, which reads the fields for energy consumption in the Machine State
Register (MSR), and gives as output the values for energy consumed for both power
plane 0 (PP0), power plane 1 (PP1) and the package. Power plane 0 typically refers to
the CPU cores with their respective caches [56, Vol 3B, sec. 14.7.4 PP0/PP1 RAPL Do-
mains], while the package energy refers to the whole processor package, i.e. all cores
plus the caches and any other on-chip controllers like for instance memory controllers
[56, Vol 3A, sec. 8.9.1 Hierarchical Mapping of Shared Resources].

The measurement code reads the energy consumption values from the MSR reg-
isters, using the RAPL (Running Average Power Limit) interface described in the In-
tel Architectures Software Developer Manual [56, Vol 3B, sec. 14.7.1 RAPL Interfaces].
These registers describe the units and granularity of the values in the registers, and also
contains the values themselves.

The most relevant MSRs for this project is read using the library is the MSR_-

PKG/PP0/PP1_ENERGY_STATUS, in conjunction with the MSR_RAPL_POWER_UNIT reg-
isters. MSR_PKG_ENERGY_STATUS bits 31:0 contains the value for energy consumed for
the whole processor package. MSR_PP0_ENERGY_STATUS and MSR_PP1_ENERGY_-

STATUS is similar, but for only the components directly related to each of the CPU cores
like the L1/L2 caches and the cores themselves, and for power plane 1, respectively.
The values are stored as integers and are specified to have a wrap-around time of about

26 CHAPTER 4. IMPLEMENTATION

60 seconds on high load [56, Vol 3B, sec. 14.7.3 Package RAPL Domains].

MSR_RAPL_POWER_UNIT describes the units of time, energy and power used in
the values. Most relevant are bits 12:8 which describes the units, or granularity, of the
MSR_PKG_ENERGY_STATUS register. The default value is 0b10000 = 16, and the unit is
computed as u = 2−ESU , which gives a default granularity of MSR_PKG/PP0/PP1_-
ENERGY_STATUS of 15.3µJ [56, Vol 3B, sec. 14.7.1 RAPL Interfaces]. In other words,
in order to get the energy consumed in Joules, one has to multiply the value in the
MSR_PKG_ENERGY_STATUS MSR by 15.3 · 1000−2.

On Linux systems, the MSR registers are made available through the device file
/dev/cpu/cpu0/msr after loading the msr kernel module.

4.1.2 ARM Cortex-A9 MPCore

On the ARM Cortex-A9, the current power dissipation of the CPU can be made available
through the three 32-bit system configuration registers, called the SYS_CFG registers
SYS_CFGCTRL, SYS_CFGDATA and SYS_CFGSTAT, for control, data and status, respec-
tively [57]. SYS_CFGCTRL is written to in order to either set some system parameter; for
instance, the frequency of the oscillators in the system can be set through this register,
or the system can be rebooted or shut down. Additionally, SYS_CFGCTRL is written
to in order to retrieve a value or measurement such as power dissipation, temperature,
voltage, and more. If a read request was put into SYS_CFGCTRL, the requested value
is put into SYS_CFGDATA if the request is valid and it succeeds. In SYS_CFGSTAT bit 0
indicates completion of the read or write request, and bit 1 indicates an error in fulfilling
the request.

Bits Description

31 Start bit. If set to 1, the request are to be initiated as soon as the register is
read.

30 Read/write bit. If set to 1 (0), initiate a write (read) request.
29:26 Daughter board configuration controller (DCC).
25:20 Function. Describes the function or value to be read or written. For power,

the value is 12. A full overview of functions can be found at [57].
17:16 Site. Which board the device resides on. Motherboard is 0, daughter boards

are 1 and 2.
15:12 Stack position, if multiple daughter boards are stacked on the given site.
11:0 Device number. Which device to be read, on the given board.

Table 4.1: Overview of the SYS_CFGCTRL register

An overview of the important bits of SYS_CFGCTRL is shown in table 4.1. Note
that bits 19:18 are undefined and is not listed. Based on this overview, a routine to
sample power can be described. First, write the appropriate value to SYS_CFGCTRL.
Then, wait until the complete bit in SYS_CFGSTAT is set. Finally, read the value from
SYS_CFGDATA.

For the hardware used for benchmarking, the daughter board controller ID is 0,

26

4.1. ENERGY MEASUREMENT ALGORITHMS 27

site is 1 and stack position is 0. For power measurement, there are two devices available:
Device 0 is the PL310 L2 cache controller and SRAM, and device 1 is the Cortex-A9 CPU
cores [58]. In order to read the power from the CPU cores, the value 0x80C10001 is
written to SYS_CFGCTRL, or in binary,

Start R/W DCC Funct. Undef Site Spos Device

1 0 0000 001100 00 01 0000 000000000001

For the L2 cache controller and SRAM the value is 0x80C10000.

On Linux-systems, the SYS_CFG registers can be accessed by memory mapping
the device /dev/mem using the mmap function in sys/mman.h. The address for the
SYS_CFG registers is the base address for system registers, which is given by the mem-
ory map for the board [59], plus the offset for the SYS_CFG registers [60]. For the board
used in this thesis, the base address is 0x10000000, and the offsets are 0xA0, 0xA4 and
0xA8 for SYS_CFGDATA, SYS_CFGCTRL and SYS_CFGSTAT respectively. The full algo-
rithm for sampling the power is given in algorithm 1.

Algorithm 1 Basic power sampling procedure
// Procedure shows sampling of device 1 (A9 cores).
// The procedure for sampling device 0 is the same.
procedure SAMPLE-POWER

Write 0x80C10001 to memory address 0x100000A4
Sleep for 300µs
while Value at address 0x100000A8 bitwise-AND 0x1 is 0 do

Sleep for 50µs
end while
return Value at address 0x100000A0

end procedure

In order to measure the energy consumption of a running application, sampling is
done in a separate thread at regular intervals. After the control register has been written
to with a read request for power, it takes a certain number of cycles before the data is
available in the data register. The status register indicates when the request has been
completed, and the data is ready. To minimize the impact of the sampling thread on
the performance of the application, the thread sleeps after the control register is written
before the data is ready instead of spinning on the status register. The sleep time was
found by measuring the time from request to completion, and verified by counting the
number of spins in the while loop and checking that the count was zero. The latency
was found to be approximately 300µs, although with slight variations.

The total energy consumption is given as

E =

∫ T

0
P (t)dt (4.1)

where T is the end time of the application, and P (t) is the power at any given time t.
The power is sampled at regular intervals and integrated numerically in order to get
the total energy consumption. Using the trapezoidal rule for numerical integration, the

28 CHAPTER 4. IMPLEMENTATION

total energy is approximated as:∫ T

0
P (t)dt ≈

n−1∑
i=0

(ti+1 − ti)
P (ti+1) + P (ti)

2
(4.2)

where n is the number of samples. In practice, the time intervals (ti+1 − ti) are not con-
stant and the number of samples n is not known because reading out the energy takes
time. Additionally, thread scheduling introduces variance in the interval lengths as the
sampling thread may be context switched in and out by the operating system. There-
fore the interval between each measurement must be used instead of a constant interval.
The full energy measurement algorithm using sampling is presented in algorithm 2.

Algorithm 2 Energy measurement using power sampling
Global: tend; initially, tend =∞ // Indicates when the benchmark has ended
procedure MEASURE-ENERGY

p0 := −1, p := −1, t0 :=NOW(), E := 0
while Benchmark is running do

SLEEP() // Sleep until the next sampling
p :=SAMPLE-POWER()
// The test may have ended while sampling.
// If so, use the end time instead of the current time.
t :=MIN(Now(), tend)
if p0 < 0 then

p0 := p
end if
E := E + (t− t0)(p+ p0)/2 // Numerical integration step
p0 := p, t0 := t

end while
return E

end procedure

4.2 Porting of SSE log and exp to AVX and NEON

In Black-Scholes there is extensive use of both natural logarithms and the exponential
function. Unfortunately, the standard C and C++ libraries do not include vectorized
versions of these functions, though they do include a scalar implementation. Comput-
ing the exponential and natural logarithms for every element in the vectors in a vector-
ized kernel would be a significant bottleneck. This is because not only are the functions
evaluated serially, but data must also be transferred between the vector registers and
general purpose registers.

The Cephes Mathematical Library provides an extensive number of mathematical
functions relevant to scientific applications [61]. The library is freely distributable and
written in C. Julian Pommier has developed an SSE and SSE2 version of the sin, cos
, log and exp functions in this library called sin_ps, cos_ps, log_ps and exp_ps,
respectively, and made his work freely available [62]. Parts of Pommier’s code were
adapted to use AVX and NEON, specifically the exp_ps and log_ps functions.

28

4.2. PORTING OF SSE LOG AND EXP TO AVX AND NEON 29

4.2.1 Porting to AVX

Porting of the SSE code for log and exp to AVX is mostly trivial. First, variables of types
__m128 and __m128i was made into __m256 and __m256i. Then the intrinsics for 128
bit SSE instructions were replaced with the 256 bit AVX instructions, where possible.
Most 128 bit intrinsics used in log_ps and exp_ps do have a 256 bit equivalent; e.g.
_mm_add_ps has a 256 bit equivalent called _mm256_add_ps.

However, element-wise bit shifting (e.g. instructions PSRLD (right shift) and PSLLD

(left shift) in SSE, with corresponding intrinsic _mm_srli_epi32 and _mm_slli_epi32)
are not introduced before AVX2 [63, appendix A], which is first implemented in Intel’s
Haswell architecture, set to be released in 2013 [64]. Also, 256 bit integer arithmetic
are missing from AVX1. In this project, bit shift operations and integer arithmetic were
done in SSE. Listings 4.1 and 4.2 show the conversion.

Listing 4.1 Missing 256 bit instructions workaround in logarithm function

1 // Cast the float vector x to ints, then shift each element right by 23 bits
2 emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
3 // Then do one subtraction
4 emm0 = _mm_sub_epi32(emm0, *(__m128i*)_pi32_0x7f);

(a) Original 128 bit code in log_ps()

1 // - Extract the lower (offset 0) 128 bits from the 256 bits register
2 // - Cast the floats to ints
3 // - Shift right by 23 bits
4 __m128i emm01 = _mm_srli_epi32(_mm_castps_si128(_mm256_extractf128_ps(x, 0)),23);
5 // Do the same for the upper (offset 1) 128 bits
6 __m128i emm02 = _mm_srli_epi32(_mm_castps_si128(_mm256_extractf128_ps(x, 1)),23);
7 // SSE integer addition
8 emm01 = _mm_sub_epi32(emm01, *(v4si*)_pi32_0x7f);
9 emm02 = _mm_sub_epi32(emm02, *(v4si*)_pi32_0x7f);
10 //Insert the 128 bit vectors into the lower and upper part of the 256 bit vector,

respectively
11 emm0 = _mm256_insertf128_si256(emm0, emm01, 0);
12 emm0 = _mm256_insertf128_si256(emm0, emm02, 1);

(b) Workaround for 256 bit in log256_ps()

4.2.2 Porting to NEON

SSE and NEON intrinsics use different datatypes in their implementations. SSE uses the
data types __m128 and __m128i for 128-bit floating point and integer vectors, respec-
tively. NEON uses data types named [type][P]x[N] where type describes the data
type (e.g. float, int, uint), P indicates how many bits there are per elements, and N
is how many elements there are. So the datatype that holds four 32-bit floating point
numbers is called float32x4, a data type that holds two unsigned integers are called
uint32x2, and so on.

Most of the intrinsics are directly mapped to NEON instructions. For instance, the
intrinsic float32x4 C = vaddq_f32(A, B); is mapped directly to vadd.f32 qC, qA

, qB, where qA, qB and qC are 128-bit vector registers. This, however, causes intrinsics
that use/return different data types to be incompatible, even though they are fully com-

30 CHAPTER 4. IMPLEMENTATION

Listing 4.2 Missing 256 bit instructions workaround in exponential function

1 // Addition
2 emm0 = _mm_add_epi32(emm0, *(__m128*)_pi32_0x7f);
3 // Shift each 32 bit element left by 23 bits
4 emm0 = _mm_slli_epi32(emm0, 23);

(a) Original 128 bit code in exp_ps()

1 // Extract 128 bit vectors from a 256 bit vector, do one addition and shift each 32 bit
element left by 23 bits

2 __m128i emm01 = _mm_slli_epi32(_mm_add_epi32(_mm256_extractf128_si256(emm0, 0), *(
__m128i*)_pi32_0x7f), 23),

3 emm02 = _mm_slli_epi32(_mm_add_epi32(_mm256_extractf128_si256(emm0, 1), *(
__m128i*)_pi32_0x7f), 23);

4

5 // Insert both 128 bit vectors into one 256 bit vector
6 emm0 = _mm256_insertf128_si256(emm0, emm01, 0);
7 emm0 = _mm256_insertf128_si256(emm0, emm02, 1);

(b) Workaround for 256 bit in exp256_ps()

patible in pure assembly. An example of this is comparison. Comparison instructions
in SSE, AVX and NEON simply set all the bits of the elements that evaluates to true to
one in the result vector, and the rest to zero. Sometimes, statements like if (a > b) a

++; are performed. In NEON assembly, assuming a is in q0, and b is in q1, this can be
written as in listing 4.3.

Listing 4.3 if (a > b) a++; with NEON assembly

1 vcgt.f32 q2, q0, q1; //compare, and put result in q2
2 vmov.f32 q3, 1.0; //put the floating point value 1.0 in q3
3 vand q2, q2, q3; //do bitwise-AND of q2 and q3 (q2 will then have the value 1.0 in

elements where the comparison were true, and 0 otherwise)
4 vadd.f32 q0, q1, q2; //add q2 (where each element is either 1.0 or 0) to q0

However, the intrinsics for comparison and logical bitwise operations only returns
unsigned integers. This means that the result must be reinterpreted as a floating point
data type before it is added to a. This is done using the vreinterpretq_f32_u32(

A) intrinsic, which reinterprets the bits in A, and returns a 128-bit vector containing
four floating point values. This may also be an issue for SSE in some circumstances,
in that instruction set the comparison and bitwise logical operations has intrinsics for
both integer and floating point types. For AVX, only intrinsics for floating point types
exist for comparison and bitwise logical operations. Listing 4.4 demonstrates how the
assembly in listing 4.3 is written using intrinsics. Since the NEON registers are typeless,
the reinterpretation intrinsics should be free, as they are only needed for the C API.

Other than the required reinterpretation casts for some of the intrinsics, the SSE in-
trinsics in the exponential and logarithm codes could more or less be translated directly
with corresponding NEON intrinsics.

30

4.3. BLACK-SCHOLES 31

Listing 4.4 if (a > b) a++; with NEON intrinsics

1 uint32x4 mask = vcgtq_f32(a,b); //perform the comparison, store result in "mask"
2 mask = vandq_u32(mask, vreinterpretq_u32_f32(vdupq_n_f32(1.0f))); //duplicate the value

1.0 to all elements of a floating point vector, and reinterpret it as an unsigned
integer for the bitwise-AND

3 a = vaddq_f32(a, vreinterpretq_f32_u32(mask)); //reinterpret the mask as a floating
point vector, and add it to a

4.3 Black-Scholes

An OmpSs implementation of Black-Scholes was provided by BSC which did not con-
tain any vectorized code. The pseudo-code of the kernel in this implementation is given
in algorithm 3. The procedure Black-Scholes evaluates the Black-Scholes formula in or-
der to find the price of every call and put option. Each evaluation is done independently
from every other, so this function has a considerable potential for parallelization, both
through vectorization and multi-threading.

In Black-Scholes, the processing of every element is independent, and thus is an
excellent candidate for parallelization.

4.3.1 Vectorization

Three vectorized versions of Black-Scholes were developed: one for SSE, AVX and
NEON. Instead of passing one element to the Black-Scholes-evaluation function, four
or eight are passed for SSE or AVX, respectively. In practice, the address to the Li-th
element of each input-array is passed, where L is the vector length (four for SSE and
NEON, eight for AVX) and i is the loop counter. Listing 4.5 shows a simplified version
of the outer loop. Here vector_width is set elsewhere, and is eight if compiling for
AVX, four for SSE or NEON, and one otherwise. The source code for the full OmpSs-
enabled outer loop can be found in listing E.1 in appendix E.

The input arguments to the Black-Scholes formula evaluation function, and to the
function N, is read into vector registers with _{mm,mm256}_loadu_ps for SSE/AVX, and
vld1q_f32 for NEON; e.g. the argument T is loaded using __m256 _T = _mm256_loadu_ps

(T) in AVX, where _T is a 256 bit vector, and T is a pointer to a sequence of at least eight
32 bit floats in the T array (see algorithm 3). A corresponding load for NEON would be
float32x4 _T = vld1q(T).

The Black-Scholes evaluation function was modified to use vector instructions in-
stead of scalar arithmetic operators. Multiplication a = b * c is replaced by va =

_{mm,mm256}_mul_ps(vb, vc) for SSE and AVX, and similarly va = vaddq_f32(vb

, vc) for NEON, where a, b and c are scalars and va, vb and vc are vectors. Addi-
tion and subtraction are replaced with va = _{mm,mm256}_{add,sub}_ps(vb,vc) in
SSE/AVX and vsubq_f32 in NEON in a similar fashion. In SSE and AVX, division
and square root is replaced with va = _{mm,mm256}_div_ps(vb, vc) and va = _{mm

,mm256}_sqrt_ps(vb), respectively.

IEEE 754 compliant division and square root are not implemented in NEON. In-

32 CHAPTER 4. IMPLEMENTATION

Algorithm 3 Reference Black-Scholes algorithm
procedure N(x)// Standard normal distribution CDF

k := (1 + 0.2316419 · |x|)−1
a := −1.821255978 + 1.330274429k
a := ak + 1.781477937
a := ak − 0.356563782
a := ak + 0.319381530
a := ak
n := 1

2πe
−0.5|x|2

if x < 0 then
return an

else
return 1− an

end if
end procedure

procedure EVAL-BLACK-SCHOLES(C, S, K, r, σ, T)
d1 := (ln S

K + (r + 1
2σ

2)T)/(σ
√
T)

d2 := d1 − σ
√
T

E := e−rT

N1 :=N(d1)
N2 :=N(d2)
c := N1S −N2KE
p := (1−N2)KE − (1−N1)S
if C then

A = c
else

A = p
end if
return A

end procedure

procedure BLACK-SCHOLES(C, S, K, r, σ, T , n)
A := Empty array for results
for i := 0→ n do

Ai :=EVAL-BLACK-SCHOLES(Ci,Si,Ki,ri,σi,Ti)
end for
return A

end procedure

C: Flags indicating whether we want a put or call option (true if call).

S: Spot prices of underlying asset

K: Strike prices

r: Risk free (annual) rates

σ: Volatility of returns of the underlying asset

T : Time to maturity

n: Problem size

32

4.3. BLACK-SCHOLES 33

Listing 4.5 Outer for loop of Black-Scholes (simplified)

1 for (i=0; i<array_size; i+=vector_width)
2 {
3 #if defined(AVX)
4 bsop_avx(&answer_fptr[i], &cpflag_fptr[i], &S0_fptr[i], &K_fptr[i], &r_fptr[i], &

sigma_fptr[i], &T_fptr[i]);
5 _mm256_zeroupper();
6 #elif defined(SSE)
7 bsop_sse(&answer_fptr[i], &cpflag_fptr[i], &S0_fptr[i], &K_fptr[i], &r_fptr[i], &

sigma_fptr[i], &T_fptr[i]);
8 #elif defined(NEON_INTRIN)
9 bsop_neon_intrin(&answer_fptr[i], &cpflag_fptr[i], &S0_fptr[i], &K_fptr[i], &r_fptr

[i], &sigma_fptr[i], &T_fptr[i]);
10 #else
11 answer_fptr[i] = bsop_reference_float(cpflag_fptr[i], S0_fptr[i], K_fptr[i], r_fptr

[i], sigma_fptr[i], T_fptr[i]);
12 #endif
13 }

stead, instructions for estimating the reciprocal of a number, as well as the reciprocal
of the square root is available. The reciprocal of the elements in some vector d is found
by first obtaining a rough estimate using the intrinsic r = vrecpeq_f32(d) [65], and
then applying the Newton-Raphson method by iterating xn+1 = xn(2 − xnd) [66]. The
function 2 − xnd is implemented as the reciprocal step instruction vrecps, with the in-
trinsic vrecpsq_f32(r, d), and thus the value of the reciprocal r can be improved by
applying r = vmul_f32(r, vrecpsq_f32(r,d)).

For computing the square root in NEON, the process is similar to that of the re-
ciprocal. An initial estimate for the reciprocal of the square root of some floating point
vector d is found using the intrinsic s = vrsqrteq_f32(n); [65]. Then the Newton-
Raphson iteration xn+1 = xn(3 − dx2n)/2 is applied until a sufficiently accurate esti-
mate of the reciprocal of the square root is obtained [66]. Finally, the reciprocal of the
value obtained is computed, and the result from this is the square root. The Newton-
Raphson iteration can be performed using the vrsqrtsq_f32(s, d) intrinsic, which
computes the function 3− dxn/2. The full iteration using intrinsics is then vmulq_f32(

s, vrsqrtsq_f32(s, vmulq_f32(d,d)));.

In the NEON implementation of Black-Scholes in this thesis, the Newton-Raphson
iteration is performed four times per reciprocal, and four times per reciprocal square
root. Since Newton-Raphson converges quadratically, the estimated number of correct
digits is 16 with a good first guess, which is provided by the intrinsics vrecpeq_f32

and vrsqrteq_f32.

Negation and absolute value operations are not a part of the SSE or AVX instruc-
tion set. The IEEE 754 standard for floating point numbers specify that the first bit is
the sign bit [67]. A vector negation operation for floating point can therefore be formed
by simply XOR-ing each element by the mask 0x80000000 (in binary, 0b100...000);
this is equivalent to flipping the first bit of each element and leaving the rest of the bits
alone, as 1⊕ x = ¬x, and 0⊕ x = x.

An absolute value operation can be implemented in a similar fashion as negation,
but instead of bitwise XOR, use bitwise AND, and modify the mask to 0x7fffffff,

34 CHAPTER 4. IMPLEMENTATION

or in binary, 0b011...111. Effectively, this clears the sign bit, because 0 ∧ x = 0, and
1 ∧ x = x.

Note that these operations would not work for integers as negative integers are
encoded as 2’s complement, and thus the rest of the bits would be different from the
positive number. The SSE and AVX code for the absolute value and negation operations
for floating point vectors in SSE and AVX is listed in listing 4.6. For NEON, instructions
exist for taking the absolute value and for negation.

Listing 4.6 Absolute value function and negation on SSE/AVX

1 /* SSE */
2 //Set the mask to 0111...11 on every element, and cast it to a float
3 __m128 absmask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff));
4 x = _mm_and_ps(absmask, x);
5

6 /* AVX */
7 __m256 _absmask = _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffffff));
8 x = _mm256_and_ps(absmask, x);

(a) Vector implementation of absolute value

1 /* SSE */
2 //Set the mask to 1000...00 on every element, and cast it to a float
3 __m128 negmask = _mm_castsi128_ps(_mm_set1_epi32(0x80000000));
4 x = _mm_xor_ps(absmask, x);
5

6 /* AVX */
7 __m256 negmask = _mm256_castsi256_ps(_mm256_set1_epi32(0x80000000));
8 x = _mm256_xor_ps(negmask, x);

(b) Vector implementation of negation

4.4 Fastest Fourier Transform in the West

In order to do benchmarks with FFTW using OmpSs, the FFTW library had to be mod-
ified to use OmpSs, and a benchmark had to be written to call the library functions.
SSE and AVX is already in place in FFTW, so the only change necessary was going from
using OpenMP to OmpSs.

4.4.1 Modifications to the FFTW library

The Mercurium compiler, sscc, does not support the data type __float128 which is
used in the FFTW3 header to define the quad precision complex data type resulting in
a compilation error. Since quad precision is not used in this project, the line using the
__float128 data type was simply commented out.

To make the benchmark also use tasks and to remove constructs obsoleted by
OmpSs like the #pragma omp parallel blocks, the OpenMP code for the benchmark
in the file threads/openmp.c in the FFTW source tree was modified. First, the #

pragma omp parallel for private(d) directive was removed in the spawn_loops

function. Then, a new #pragma omp task private(d) directive was put inside the

34

4.5. MATRIX MULTIPLICATION 35

Argument Description

--width=N Set the input width to N
--inplace Call the FFTW kernel in-place (i.e. the output is placed in the input array)

--measure
Make FFTW plans with auto-tuning to the system. This involves run-
ning a number of transforms to explore different plans.

Table 4.2: FFT benchmark arguments

for loop, in order to spawn a new task for each iteration. Then finally a #pragma omp

taskwait directive was inserted after the for-loop. The final loop is shown in listing
F.1.

4.4.2 Implementation of the benchmark

As FFTW is a library an external benchmark application is used that calls FFTW. A
FFTW benchmark exists called benchFFT, which runs FFTW and several other FFT li-
braries for comparison of performance [68]. However, benchFFT is designed to auto-
matically run many standardized tests on many different FFT implementations, which
does not fit the need of this project.

Instead, a custom benchmark that suits the needs of this project was developed.
All this benchmark does is take the input size as a command line argument along with
modifiers, and then create a FFTW plan for execution, and finally execute the plan on
the problem given. The contents of the input array are populated with random complex
numbers between −10000− 10000i and 10000 + 10000i before execution starts.

The benchmark takes in a number of arguments, with the most important ones
shown in table 4.2. If run with --measure, the first execution will take longer because
FFTW will explore different combinations of parameters. However, after a problem
size has been planned out once for a set number of threads and SIMDization settings,
the benchmark application will store the knowledge that FFTW gained to disk, called
wisdom in the FFTW terminology, so that subsequent benchmarks with the same pa-
rameters will incur only a minor overhead comparable to running without --measure.

Listing F.2 shows a condensed version of the source code for the FFTW benchmark.
One important thing to note is that when operating on input sizes smaller than 8192,
the benchmark still allocates space for 8192 elements. This is because it was found
that with smaller allocations, the performance for these small problem sizes was very
low (less than 0.2 GFLOPS for 2048 and 4096 elements), causing a sudden increase in
performance when going from 4096 to 8192 elements, from about 0.2 GFLOPS to about
3. Always allocating 8192 or more elements solved this problem. We attribute this to
destructive cache interference for such small problems.

4.5 Matrix Multiplication

The matrix multiplication application was developed at the Barcelona Supercomput-
ing Center (BSC) as a prototype application that uses OmpSs, and this application was

36 CHAPTER 4. IMPLEMENTATION

made available. Code for energy measurements and for reading cache miss counters
was added. The application has two main parameters: The block size that each task
will compute, and the problem size. This block size is partly independent from the
block sizes used to perform cache-efficient matrix-matrix multiplications, as the blocks
are merely there to provide parallelism. ATLAS performes cache-efficient blocking of
each block-block multiplication.

The algorithm does the following. First, the matrices A, B and C are subdivided
into N/NB × N/NB blocks. The multiplication of any two blocks is defined as one
task, and any two multiplications that are not stored in the same block of C can be per-
formed in parallel. Then, a blocked matrix-matrix multiplication is performed, where
each block-block multiplication is performed by a call to ATLAS. ATLAS in turn may
subdivide each block in order to make them fit in the L1 or L2 cache. The pseudo-code
for this algorithm is shown in algorithm 4. sgemm refers to the BLAS procedure "Single
precision GEneral Matrix-Matrix multiply", and is the call to ATLAS.

Algorithm 4 Task-based Matrix-Matrix Multiply
procedure MATMUL(A, B, C, N , b)

for i := 0→ N/b− 1 do
for j := 0→ N/b− 1 do

for k := 0→ N/b− 1 do
ia← i · b
jj ← j · b
kk ← k · b
Create task SGEMM(A[ii : ii + b, kk : kk + b], B[kk : kk + b, jj : jj + b],

C[ii : ii+ b, jj : jj + b], b)
end for

end for
end for

end procedure

36

37

Chapter 5

Experiment Setup and Methodology

This chapter describes the experiment setup for the benchmarks. In addition to giving
an overview of the hardware and software packages used, the methodology of experi-
ments, FLOPS counts and statistical metrics are covered.

5.1 Test Bench

Experiments were run on sif, a workstation with a quad core Sandy Bridge CPU. Ad-
ditionally, experiments were run on an ARM Motherboard Express µATX development
board equipped with a CoreTile Express A9x4 daughter board with a Cortex-A9 MP-
Core test chip, a quad-core CPU. The following subsections have an overview of the
hardware for these machines, which compilers was used and compiler flags and which
third-party libraries and software that were used.

5.1.1 Hardware

sif

sif has a Intel Sandy Bridge Core i7 2600 CPU with four cores, but with the op-
tion of turning on hyper-threading for an additional four hardware threads. A dia-
gram of the cores and caches are shown in figure 5.1. The hardware specifications
for sif are listed in table 5.1. The CPU specifications were mostly retrieved from
/proc/cpuinfo. Cache sizes, line sizes and ways of associativity were retrieved from
/sys/devices/system/cpu/cpu0/cache/index*. Cache latencies were found in
[69, table 2.6].

38 CHAPTER 5. EXPERIMENT SETUP AND METHODOLOGY

Machine (16GB)

Socket P#0

L3 (8192KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#0

PU P#4

L2 (256KB)

L1 (32KB)

Core P#1

PU P#1

PU P#5

L2 (256KB)

L1 (32KB)

Core P#2

PU P#2

PU P#6

L2 (256KB)

L1 (32KB)

Core P#3

PU P#3

PU P#7

Figure 5.1: Diagram of caches, cores and hyper-threads on sif

Property Value

CPU model Intel(R) Core(TM) i7-2600
Model # 42
Stepping 7
Manufacturing process 32nm
Clock frequency (min-max) 1.60GHz - 3.40GHz
Number of physical cores 4
Number of logical cores 8

Main memory 16GB

Table 5.1: Hardware specifications for sif

Cache Size Ways of Line size Latency
associativity (cycles)

Level 1 32KB(Data)/32KB(Instr) 8 64B 4
Level 2 256KB 8 64B 12
Level 3 8MB (shared) 16 64B 26-31

Table 5.2: Cache information for Intel Core i7-2600, 3.4GHz

ARM development board

The ARM development board has a daughterboard with four Cortex-A9 CPU cores.
The hardware specifications are listed in table 5.3, and a diagram of the hardware is
provided in figure 5.2.

38

5.1. TEST BENCH 39

Motherboard Express uATX

Daughterboard CoreTile Express A9x4

DRAM (1GB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#0

L1 (32KB)

Core P#1

PU P#1

L1 (32KB)

Core P#2

PU P#2

L1 (32KB)

Core P#3

PU P#3

Figure 5.2: Diagram of caches, cores and memory on the ARM board

Property Value

Baseboard ARM Motherboard Express µATX
Daughter board CoreTile Express A9x4

Main memory 1GB
CPU model ARM Cortex-A9 MPCore
Clock frequency (max) 400MHz ([70])
Number of physical cores 4
Number of logical cores 4
Level 1 cache (Data/instr) 32kB/32kB [71]

Table 5.3: Hardware specifications for ARM development board

5.1.2 Software and Libraries

On sif, openSUSE 11.4 (x86_64) is used with Linux kernel version 2.6.37.6. On the ARM
board, Debian Wheezy with kernel 3.3.0 was used. Also, a list of third party software
packages that were used in this thesis is listed in table 5.4.

Software Version Licence Website

Nanos++ 0.6a/0.7a GNU LGPL https://pm.bsc.es/projects/nanox
Mercurium 1.3.5.8 GNU LGPL https://pm.bsc.es/projects/mcxx
FFTW 3.3.1-beta1 GNU GPL1 http://www.fftw.org
ATLAS 3.9.70 BSD-style http://math-atlas.sourceforge.net
sse_mathfun Unknown zlib Licence http://gruntthepeon.free.fr/ssemath
PAPI 4.2.1 BSD Licence http://icl.cs.utk.edu/papi

Table 5.4: Third party software and libraries

1GNU General Public Licence

https://pm.bsc.es/projects/nanox
https://pm.bsc.es/projects/mcxx
http://www.fftw.org
http://math-atlas.sourceforge.net
http://gruntthepeon.free.fr/ssemath
http://icl.cs.utk.edu/papi

40 CHAPTER 5. EXPERIMENT SETUP AND METHODOLOGY

5.1.3 Compiler and compiler flags

For compilation of OmpSs code, the Mercurium compiler, sscc version 1.3.5.8 was
used. sscc in turn calls gcc for compilation of the translated code to native machine
code. gcc version 4.6 was the first version of gcc to get support for AVX intrinsics
and data types. gcc version 4.7 was used on the Sandy Bridge machine. On the ARM
development board, GCC 4.6.3 was used. Compiler and configure flags for the codes
compiled in this thesis are listed in table 5.5 and 5.6, respectively. For compilation of the
software that comprises OmpSs, i.e. the Mercurium compiler and the Nanos++ runtime
system, gcc was used. Note that the software’s configure script may add additional
flags automatically that are not listed here.

Software Compiler Compiler Remarks
suite flags

Common flags for ARM: -mcpu=cortex-a9 -mfpu=neon
all software Intel: -march=corei7-avx

Black-Scholes sscc -O3 -std=c99 --ompss1 See footnote.
FFTW (benchmark) sscc -O3 -std=c992 See footnote.
Matrix multiplication sscc -O3 -std=c99 --ompss

OmpSs Package

Bison gcc -O2

Nanos++ runtime gcc -O2

Mercurium gcc -O2

Other Packages

FFTW sscc -O2 --ompss

ATLAS gcc

PAPI gcc

Table 5.5: Compiler flags for software used in the thesis

Software ./configure flags
(excl. paths)

Mercurium --enable-tl-openmp-nanox

--enable-ompss --enable-tl-superscalar

--with-superscalar-runtime-api-version=5

FFTW --enable-openmp {--enable-avx|--enable-sse2|--enable-neon}

ATLAS None

Table 5.6: Configure flags for third party software

1Addition for AVX/SSE: -mavx -DAVX/-msse2 -DSSE
2Addition for AVX/SSE: -DAVX/-DSSE

40

5.2. EXPERIMENT METHODOLOGY 41

5.2 Experiment Methodology

Before any benchmarking was begun, the kernels were run once after initialization in
order to avoid cold start cache misses. Next, the performance counters for cache statis-
tics are started with PAPI_start_counters() and energy measurements are started
with a call to start_reading() and stopped with stop_reading(), which is the func-
tions that implement the algorithms described in section 4.1. Then, the current system
time is retrieved using the POSIX function gettimeofday().

If a kernel runs for less than 0.1 seconds, it is repeatedly run until 0.1 seconds has
passed. The values for running time, cache misses/references and energy usage were
divided by the number of runs to get the average. This was done in order to get accurate
readings from the energy registers, which has a limited resolution of 15.3µJ [56, Vol 3B,
sec. 14.7.1 RAPL Interfaces] as default, as well as a limited update frequency.

Each application was run 10 times for each configuration of problem size, number
of threads, optimizations and other flags. The median of the measurements was used
in the results that are presented.

Unless otherwise specified, the CPU was run at full clock frequency (3.4GHz for
the Sandy Bridge, 400MHz for the ARM Cortex-A9 MPCore). To ensure that there
would be no interruption from automatic frequency scaling, the frequency was fixed
to 3.4GHz before each run when using the Sandy Bridge. No frequency scaling was
enabled on the Cortex-A9.

5.2.1 Energy Measurements

For Sandy Bridge, when an experiment is run, the current state of the MSR_{PKG|PP0|PP1}_-
ENERGY_STATUS register is read. After the experiment ends, the same register is read
again. The difference between these two readouts is the energy spent during the exper-
iment, divided by the energy status unit, as described above. To get the energy spent
in Joules, the value from the register is multiplied by the energy unit as described in
section 4.1. To get the average power, the energy in Joules is divided by the duration of
the experiment.

For ARM, before the experiment starts, a energy sampling thread is spawned
which implements algorithm 2 from section 4.1 and is run continuously until the bench-
mark ends. For each sampling iteration, both device 0 and 1 (L2 cache+SRAM, and CPU
cores) is measured, using algorithm 1. After the benchmark ends, the package energy is
computed as Epkg = Ecores + EL2+SRAM .

Every experiment run for performance measurements also records the energy us-
age in Joules.

5.2.2 Experiments

In Black-Scholes, the task size, i.e. the number of elements of the output array each task
computes, is varied for different scheduling algorithms for the small problem size using
eight threads for Sandy Bridge, and four threads on ARM. In FFTW, only scheduling

42 CHAPTER 5. EXPERIMENT SETUP AND METHODOLOGY

algorithms are tested as there are no task size parameter. Scheduling algorithms are
chosen by setting the NX_SCHEDULE environment variable. Task sizes are set by setting
the --lwgsize parameter to the Black-Scholes application.

In Black-Scholes and FFTW, two specific problem sizes were chosen: One small
(N = 213 for Black-Scholes, and N = 214 for FFTW) and one large (N = 225 for both
on Sandy Bridge, and N = 224 for both on ARM). The purpose of the large problem
sizes is to see how well the application performs when the problem is much larger than
what fits in the cache. The small problem is small enough to fit in the L2 cache, and thus
should see better speedup since the bottleneck with memory bandwidth and latency is
reduced. These problem sizes were run on one up to eight threads on Sandy Bridge, and
four threads on ARM. For ARM, smaller problem sizes are used due to both memory
limitations, and due to more limited processing power.

In addition to testing two specific problem sizes on every thread configuration, a
range of problem sizes from N = 2 up to N = 225 was used on both FFTW and Black-
Scholes with one, four and eight threads on Sandy Bridge. For ARM, N = 2 and up
to N = 223 was tested with one, two and four threads. The reason for this benchmark
is seeing the performance varying as the problem size grows to see the effects of the
cache, and how this relates to cache misses. For matrix multiplication, the matrix sizes
were chosen to be 128× 128, 256× 256, 512× 512, ..., 8192× 8192 for Sandy Bridge, and
64×64 up to 2048×2048 on ARM. Larger problem sizes takes too long to compute to be
practical for benchmarking on a single node as the number of floating point operations
are O(N3).

Nanos++ version 0.7a were used for all results except those in section 6.1. Version
0.6a and 0.7a show very different performance results on small problem sizes on both
Black-Scholes and FFTW. As such, the experiments using the small problem size is run
on 0.6a as well as 0.7a.

All tests were performed in single (32 bit) precision because the instruction set in
the ARM Cortex-A9 MPCore, ARMv7, does not support double precision with NEON
vector instructions. However, the ARMv8+A instruction set will support double preci-
sion floating point [72].

Stability of the energy MSRs on Sandy Bridge

In order to get trustworthy results for energy measurements, the MSRs must deliver
stable results; i.e. the standard deviation should be small. To establish that the MSRs
are stable, a benchmark computing the matrix product C = AB where A and B is
512 × 512 matrices were run for 1000 iterations, and the standard deviation was com-
puted. ATLAS was used to perform the multiplication. The distribution of the energy
measurements are shown in figure 5.3 and the statistics are tabulated in table 5.7. The
data show that generally the measurements are very stable, with a standard deviation
of less than 1% of the mean.

An outlier in these figures is defined as a value with a difference from the mean
larger than three standard deviations. Assuming a normal distribution of the measure-
ments, approximately 1/370 of the measurements are expected to be outliers with this

42

5.2. EXPERIMENT METHODOLOGY 43

definition due to the three-sigma rule which states that Pr(µ − 3σ ≤ x ≤ µ + 3σ) ≈
0.9973. Two outliers are detected, which is within the expected range for a normal dis-
tribution.

14300 14400 14500 14600 14700 14800 14900 15000 15100 15200
Energy consumed (mJ)

0

5

10

15

20

25

30

35

#
 s

am
pl

es

Figure 5.3: Distribution of sample values from MSR consistency test

Median Mean Standard deviation Minimum Maximum Outliers

14795.59 14774.94 135.35 14341.41 15157.57 2

Table 5.7: Statistical data from MSR consistency test

Stability of sampling method on ARM

The stability of the energy measurements were also measured on the ARM platform,
using power sampling as described in section 4.1. The same benchmark as for Sandy
Bridge was used, but instead of multiplying 512×512 matrices, 128×128 matrices were
used. The results are shown in figure 5.4, and a statistical summary is given in table
5.8. As with for Sandy Bridge, the measurements are stable, with two outliers and a
standard deviation of less than 0.8% of the mean.

Median Mean Standard deviation Minimum Maximum Outliers

119.89 119.92 0.95 117.74 132.27 2

Table 5.8: Statistical data from consistency test of energy measurements on ARM

Discussion of wrap-around times of MSRs

The Intel architectures software developer manual gives an estimate of the wrap-around
time for the package energy status register of 60 seconds on high load [56, Vol 3B, sec.
14.7.3 Package RAPL Domains]. However, calculations indicate that the wrap-around

44 CHAPTER 5. EXPERIMENT SETUP AND METHODOLOGY

116 118 120 122 124 126 128 130 132 134
Energy consumed (mJ)

0

10

20

30

40

50

60

70

80
#

 s
am

pl
es

Figure 5.4: Distribution of sample values from energy measurements using sampling
on ARM

time may be far greater. First, assuming default granularity of 15.3µJ on the energy sta-
tus registers, these registers may represent values between 0J and 15.3 · 1000−2 · (232 −
1)J ≈ 65713J . Assuming that the CPU uses the maximum thermal design power
(TDP) of the benchmarked CPU, 95W [73], we can find the wrap-around time to be
65713J/95W ≈ 691.7s, more than a factor of 10 larger than the estimate in the manual.

5.2.3 Cache behavior experiments

The Intel Sandy Bridge CPU has performance counters available for measuring many
performance-related statistics like the number of instructions executed, the number of
FLOPS performed, cache misses/cache references, and more [56]. Performance counters
are used in this work to measure the cache miss and reference rate for the L2 and L3
cache.

Performance counters counts events of certain types, e.g. cache misses, cache ac-
cesses, load/stores, and so on. PAPI (Performance Application Programming Interface)
[74] is a high-level library for reading the counters counting occurrences of these events.
It provides a set of predefined events; e.g. PAPI_L2_TCA is all level 2 cache accesses, and
PAPI_L2_TCM is all level 2 cache misses. Table 5.9 lists the events used for measuring
level 2 and 3 cache miss rate. The native events were retrieved by running the program
papi_decode.

PAPI event Native event [56, table 19-3] Description

PAPI_L2_TCA L2_RQSTS:ALL_CODE_RD + L1D:REPLACEMENT Total L2 cache accesses
PAPI_L2_TCM LONGEST_LAT_CACHE:REFERENCE Total L2 cache misses
PAPI_L3_TCA LONGEST_LAT_CACHE:REFERENCE Total L3 cache accesses
PAPI_L3_TCM LONGEST_LAT_CACHE:MISS Total L3 cache misses

Table 5.9: Performance counter metric composition of PAPI events

From table 5.9 we see that the number of references to the L2 cache is implemented

44

5.3. DEFINING FLOPS COUNTS 45

by adding the number of replacements in L1’s data cache (i.e. the number of times lines
were replaced in L1D due to misses) and the number of instruction reads from L2. L2
miss count is implemented as the number of references to the longest latency cache (i.e.
the L3 cache); this is a natural choice since the L3 is accessed when and only when there
is a miss in L2. The L3 total accesses and L3 total misses are self-explanatory from the
table.

The Cortex-A9 does not offer performance counters to compute the cache miss
rates other than the number of L1 misses.

5.3 Defining FLOPS Counts

In order to measure the computational throughput in FLOPS it must be defined how
many floating point operations goes into computing the answer using a given input
size. One way of obtaining this would be to use performance counters to measure how
many floating point operations was actually performed for each experiment. However,
this also counts unnecessary operations due to non-optimal algorithms, and is not well
suited for comparing performance between implementations. For instance, consider a
hypothetical case where some algorithm has two implementations, A and B. Say B runs
10% slower in terms of running time compared to A, but performs 20% more floating
point operations. Implementation A is clearly better since it completes faster, but B
would have a higher FLOPS rate, which gives a false view of the performance of the
algorithm.

Another way is counting the number of floating point operations in the algorithm
(or an idealized version of the algorithm), by simply counting add, multiply, divide and
subtract-operations. This way, the number of FLOPS an application manages to achieve
is directly proportional with the running time, and thus is a good measure of how much
useful work an algorithm actually does. One example to illustrate the difference be-
tween useful and actual floating point operations is in parallelizing stencil methods
[75]. When parallelizing stencil methods, border cells for each processor (ghost cells)
needs to be communicated to each neighboring processor. When data movement is ex-
pensive due to high latencies, it may pay off to transfer more than one layer of ghost
cells to the neighboring processors so that fewer data transfers needs to take place. Then
each processor needs to do extra work because some cells then is computed simultane-
ously by more than one processor, and thus the actual work is larger than the amount
of useful work.

For this thesis, FLOPS measurements were done by counting or estimating the
number of "useful" floating point operations, and dividing this by the running time. In-
teger operations such as shifts and bitwise logical operations, and comparisons were
ignored. Table 5.10 shows the floating point operation counts for each application.
For Black-Scholes, assumptions were made for how many floating point operations
the functions log, exp and sqrt do. These numbers were mainly retrieved from [76],
but were also checked against the Cephes math library [61], and the numbers were
confirmed to be underestimates of the actual floating-point operation counts for these
functions by visual inspection of the code. For completeness, these are also tabulated in

46 CHAPTER 5. EXPERIMENT SETUP AND METHODOLOGY

5.10.

Kernel Problem Floating-point Remarks
size operation count

exp 1 20 From [76].
log 1 20 From [76].
sqrt 1 15 From [76].

Black-Scholes N 153N
From counting, using the above assump-
tions about square root, log and exp.

FFTW N 5N logN From [17].
Matrix multiplication N 2N3 From equation 3.6.

Table 5.10: Floating-point operation counts for different kernels/functions

5.4 Problem Sizes and Memory Footprints

In each experiment, the problem sizes are represented by the value N . What N says
about the computational complexity and space requirements varies between applica-
tions. In the Black-Scholes benchmark, there are six input arrays and one output array
where each element is four bytes and N is here the number of elements in each array.
This gives a memory footprint of Black-Scholes of 4 · 7 ·N = 28N bytes. In FFTW N

represents the number of elements in the array that are to be transformed to the Fourier
domain. The benchmark uses an out-of-place transform, requiring one output array
and one input array, each containing N elements of 4 × 2 = 8 bytes each, representing
each single-precision complex number. This gives a total memory footprint of 16N . For
matrix multiplication, N represents the number of elements in either dimension for the
input and output matrices A, B and C. Three matrices of size N × N must be stored,
requiring a total of 4 · 3N2 = 12N2 bytes.

5.5 Statistical Metrics

Each experiment is run for 0.1 seconds, and depending on variability, each iteration
may run the kernel a different number of times. Because of this, weighted means and
weighted standard deviations is used to compute the mean and standard deviation,
respectively.

The weights are chosen to be wi = Ni, where Ni is the number of times the kernel
ran in iteration i. Let k be the number of iterations, and N =

∑
iNi. This gives an

estimator of the mean µ̂ as

µ̂ =
1

N

∑
i

NiXi

and an estimate of the standard deviation of the mean σ̂ as

σ̂mean =

√
k

N(k − 1)

∑
i

Ni(Xi − µ̂)2

46

5.5. STATISTICAL METRICS 47

It is easy to see that if each iteration only runs once, i.e. Ni = 1, then N = k, and this
formula reduces to the commonly used formula for the sample standard deviation,

σ̂ =

√
1

N − 1

∑
i

(Xi − µ̂)2

In this report, the relative standard deviation, in percent (%RSD) is reported for the
experiments. This quantity is defined as

%RSD = 100% ·
σmean
µ̂

49

Chapter 6

Results and Discussion

In this chapter we present performance results with discussion for Sandy Bridge. ARM
results can be found in appendix A.

Performance was tested for all kernels, both with regards to vectorization with SSE
and AVX, and multi-threading. Performance testing is necessary for energy efficiency
studies, as energy efficiency often is considered a function of performance and energy
usage. For instance, the energy-delay product involves the total running time as well
as energy consumed, and the FLOPS/Power metric is a function of power (J/s) and
performance (FLOPS).

Performance can be improved in several ways: Adding more cores, vectorizing
the code using SIMD instructions, increasing the clock frequency, optimizing the ex-
isting code and using a more efficient compiler. However, decreasing the divisor, i.e.
power is more difficult because that often involves e.g. decreasing the clock frequency,
which impacts performance. Instead, we may try to increase efficiency through better
utilization of CPU functionality like vectorization, and using multiple cores instead of
increasing the clock frequency.

One of the arguments for using multiple CPU cores is that single core perfor-
mance at some point will reach an ILP wall1, and increased power requirements due
to higher clock frequencies [30][32][31]. Assuming perfect parallelism within the ap-
plication, the theoretical speedup is N using N CPU cores. However, Amdahl’s Law
states that speedup is limited by the serial fraction of the program [77]. There are often
dependencies between the tasks, and two dependent tasks must be executed serially.
Performance is also often limited by memory bandwidth.

The following sections presents performance and energy efficiency results of Black-
Scholes, FFTW and matrix multiplication for Sandy Bridge. Results are presented both
with respect to the number of cores, and vectorization using SIMD instructions. First,
performance results using an older version of Nanos++, 0.6a, is presented. Then, the
results for the three applications Black-Scholes, FFTW and matrix multiplication are
presented.

1ILP = Instruction level parallelism

50 CHAPTER 6. RESULTS AND DISCUSSION

For each application, the results are presented in the order given by table 6.1. De-
tails about the experiments is found in section 5.2.2.

Black-Scholes and FFTW

1. Performance using different scheduling algorithms, and on Black-Scholes, different
task sizes

2. Performance for one through eight threads
3. Performance as problem size increases
4. Power dissipation for one through eight threads
5. Power dissipation for a range of problem sizes
6. Energy efficiency in GFLOPS/W for a range of problem sizes
7. Energy consumed for one through eight threads
8. Normalized EDP and EDD for one through eight threads

Matrix multiplication

1. Performance as problem size increases
2. Power dissipation for a range of problem sizes
3. Energy efficiency in GFLOPS/W for a range of problem sizes
4. Normalized energy consumption for a range of problem sizes
5. Normalized EDP and EDD for a range of problem sizes

Table 6.1: Result presentation order

6.1 Black-Scholes: Scheduling and Variability in Nanos++ Ver-
sion 0.6a

In Nanos++ version 0.6a, significant variation in the performance was observed for the
default scheduling algorithm. This section presents the results from the experiments
that was performed using 0.6a. Although the newer version does not show this behav-
ior, the newer version show significantly lower performance for small problem sizes
compared to the old Nanos++ version when the scheduling algorithms and parameters
have been tweaked for both.

Figure 6.1 and 6.2 shows the performance and standard deviation of the perfor-
mance of Black-Scholes evaluations when going from 1 to 8 threads. For the large prob-
lem in figure 6.1, the performance is mostly stable, although it does drop after five
threads. However, for the small problem, we see that we get some speedup going from
one to two threads, but after this, the performance drops except for the non-vectorized
version, before going back up at five and seven threads. Looking at the standard de-
viation, the values are very high, with up to almost 80% relative to the mean. Note
that as mentioned in section 5.5, each experiment is run for at least 0.1 seconds, and the
running times are then averaged, so the standard deviation of each separate run is even
higher than what is shown here.

We attribute the low performance and high variability of the small problem is that
the default scheduling policy used in OmpSs has a weakness when an application is
run for a sufficiently small amount of time. Two other scheduling policies was tested

50

6.1. BLACK-SCHOLES: SCHEDULING AND VARIABILITY IN NANOS++ VERSION 0.6A 51

1 2 3 4 5 6 7 8
Number of threads

0

2

4

6

8

10

12

14

16

18
Pe

rfo
rm

an
ce

 (G
FL

OP
S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0

2

4

6

8

10

12

14

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.1: Performance with regards to number of threads, Black-Scholes, N=225

1 2 3 4 5 6 7 8
Number of threads

0

2

4

6

8

10

12

14

16

18

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0

10

20

30

40

50

60

70

80

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.2: Performance with regards to number of threads, Black-Scholes, N=213

using the small problem size: Distributed breadth-first, and work-first, both described
in section 2.2.5. The results are shown in figures 6.3 and 6.4.

We see that the standard deviation is clearly smaller than using the default schedul-
ing, with distributed breadth-first scheduling having considerably smaller standard de-
viations on most configurations than work-first. When running on two threads, work-
first shows a considerable degradation of performance, accompanied by a high stan-
dard deviation. Overall, the performance with work-first scheduling is lower than dis-
tributed breath-first.

What both work-first and distributed breadth-first schedulers have in common is
that they implement work stealing for idle threads, which results in less time where
threads actually idle. When a thread is idling either because there are no ready tasks
and there is no task stealing, the scheduler may do one of two things: Actively wait for
work by spinning until work is available, or yielding to the operating system’s thread

52 CHAPTER 6. RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8
Number of threads

0

2

4

6

8

10

12

14

16

18

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.3: Performance of small problem, distributed breadth-first scheduling

1 2 3 4 5 6 7 8
Number of threads

0

2

4

6

8

10

12

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0

5

10

15

20

25

30

35

40

45

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.4: Performance of small problem, work-first scheduling

scheduler until there is available work. The latter gives a slight overhead because if
work becomes available shortly after the thread yielded, the thread will not do any
work before the operating system’s thread scheduler context switches that thread back
in again. On the other hand, spinning may give some overhead when sharing resources
on a single core like when a processor runs with hyper-threading enabled. When no
hyper-threading is active, we have no explanation for the behavior we see.

As a compromise between always yielding and always spinning, the Nanos++
scheduler spins for a certain number of times, before yielding to the operating system.
Some investigation into the Nanos++ runtime system reveals that when idle, the sched-
uler spins 100 times before yielding; this value is controllable by the environment vari-
able NX_SPINS. In order to remove the factor of resource contention on hyper-threads
due to the scheduler spinning, NX_SPINS was set to 1. Figures 6.5, 6.6 and 6.7 shows
these results.

52

6.1. BLACK-SCHOLES: SCHEDULING AND VARIABILITY IN NANOS++ VERSION 0.6A 53

1 2 3 4 5 6 7 8
Number of threads

0

2

4

6

8

10

12

14

16

18
Pe

rfo
rm

an
ce

 (G
FL

OP
S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.5: Performance of small problem, default scheduling, no spinning

1 2 3 4 5 6 7 8
Number of threads

0

2

4

6

8

10

12

14

16

18

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.6: Performance of small problem, distributed breadth-first scheduling, no spin-
ning

The results clearly show far more stable results than keeping NX_SPINS at the
default value. Work-first scheduling again show poor performance compared to dis-
tributed breadth-first, while the default and DBF schedulers give similar results performance-
wise, and both show an overall low standard deviation. The default scheduler shows
a higher performance than the DBF scheduler, but only slightly. We now see a defi-
nite speedup going up to four threads for all vectorizations, however only the SSE and
non-vectorized implementation continues to speed up after four threads.

The results using different task sizes on different scheduling algorithms in Black-
Scholes are shown in figure 6.8. The performance peaks at a task size of 1024, i.e. one
task per thread. For all vectorizations, work-first scheduling performs the worst, while
DBF are slightly faster than the default scheduler on large task sizes (256+).

54 CHAPTER 6. RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8
Number of threads

0

2

4

6

8

10

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.7: Performance of small problem, work-first scheduling, no spinning

64 128 256 512 1024
Task size (# elements)

5

10

15

20

25

30

35

40

45

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vec., default sched.
No vec., DBF sched.
No vec., WF sched.
SSE, default sched.
SSE, DBF sched.
SSE, WF sched.
AVX, default sched.
AVX, DBF sched.
AVX, WF sched.

Figure 6.8: Performance with different task sizes, no spinning

6.2 Black-Scholes Results

In this section, performance, energy and energy efficiency results for Black-Scholes are
presented. First, performance is tweaked, and results are presented where different
task sizes are tried out for different scheduling algorithms on the maximum number
of threads. Then, results are presented where the number of threads are varied from 1
through 8, and where the problem size is varied between 2 and 225. After the perfor-
mance results, energy and energy efficiency measurements are presented.

54

6.2. BLACK-SCHOLES RESULTS 55

6.2.1 Performance

The results from varying task sizes and scheduling algorithms as described in section
5.2.2 are shown in figures 6.9 and 6.10, and is also tabulated in table B.1.

64 128 256 512 1024 2048
Task size (# elements)

5

10

15

20

25

30

35

40

45

50

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vec., default sched.
No vec., DBF sched.
No vec., WF sched.
SSE, default sched.
SSE, DBF sched.
SSE, WF sched.
AVX, default sched.
AVX, DBF sched.
AVX, WF sched.

(a) Performance

64 128 256 512 1024 2048
Task size (# elements)

0

2

4

6

8

10

12

14

16

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vec., default sched.
No vec., DBF sched.
No vec., WF sched.
SSE, default sched.
SSE, DBF sched.
SSE, WF sched.
AVX, default sched.
AVX, DBF sched.
AVX, WF sched.

(b) Standard deviation

Figure 6.9: Performance of large problem with different task sizes, 8 threads

64 128 256 512 1024
Task size (# elements)

5

10

15

20

25

30

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vec., default sched.
No vec., DBF sched.
No vec., WF sched.
SSE, default sched.
SSE, DBF sched.
SSE, WF sched.
AVX, default sched.
AVX, DBF sched.
AVX, WF sched.

(a) Performance

64 128 256 512 1024
Task size (# elements)

0

2

4

6

8

10

12

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vec., default sched.
No vec., DBF sched.
No vec., WF sched.
SSE, default sched.
SSE, DBF sched.
SSE, WF sched.
AVX, default sched.
AVX, DBF sched.
AVX, WF sched.

(b) Standard deviation

Figure 6.10: Performance of small problem with different task sizes, 8 threads

These results show that having large task sizes gives significantly better perfor-
mance as long as there are enough tasks. The median computational rate goes from
about 14 to 47-48 GFLOPS for AVX, and is doubled for SSE from about 14 to about 28-29
GFLOPS when going from 64 to 2048 on the large problem. On the small problem size,
the task size seems to be optimal at 256 for the default scheduler. As a contrast, section
6.1 shows an optimal task size of 1024 for the old Nanos++ version.

For the large problem where there is an abundance of tasks available, it is apparent
that as task size increases, the scheduling algorithm has less impact. In fact, for SSE
and non-vectorized codes, all three scheduling algorithms converge at task size 2048.

56 CHAPTER 6. RESULTS AND DISCUSSION

The default scheduler appears to give the best performance for most or all other task
sizes, both for SSE and AVX. For the small problem, however, DBF scheduling performs
better as long as the task size is 256 elements or more. Work-first shows the lowest
performance of the three scheduling algorithms.

The performance tests for one through eight threads were run with the larger task
sizes that were found to give the best performance for eight threads using DBF schedul-
ing, as this gave clearly the best performance on the small problem, and very close to
the best performance on the large problem. For the large problem, the task size 2048
was chosen. For the small problem, 256 was chosen. The results are shown in figure
6.11 and 6.12, and tabulated in tables B.2 and B.3.

1 2 3 4 5 6 7 8
Number of threads

0

5

10

15

20

25

30

35

40

45

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0.0

0.5

1.0

1.5

2.0

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.11: Performance of large problem with task size 2048, DBF scheduling

1 2 3 4 5 6 7 8
Number of threads

0

5

10

15

20

25

30

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0

1

2

3

4

5

6

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.12: Performance of small problem with task size 256, DBF scheduling

We see a near perfect speedup up to four threads for the large problem. After that,
we start assigning more than one thread per core, so the speedup becomes sub-linear.
The small problem size also shows close to linear speedup up to four threads, reach-

56

6.2. BLACK-SCHOLES RESULTS 57

ing 25 GFLOPS. After that, when hyper-threading comes into effect, the performance
decreases at five and six threads, before increasing again on seven and eight.

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0

10

20

30

40

50
Pe

rfo
rm

an
ce

 (G
FL

OP
S)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

(a) Performance

Figure 6.13: Performance of Black-Scholes at different problem sizes

Figure 6.13 shows the performance of Black-Scholes with regards to the problem
size. The tabulated data can be found in tables B.4, B.5 and B.6. Again, distributed
breadth-first scheduling is used, and task sizes are set so that for 2 ≤ N ≤ 32, task size
is 8; for 64 ≤ N ≤ 2048, task size is N/8; for 4096 ≤ N ≤ 8192 the task size is 256; for
N = 16384, task size is 512; for N ≥ 32768 the task size is 2048. The blue line marks the
point where the memory footprint reaches 8MB, i.e. the size of the last-level cache. We
here see a slight performance peak at N = 218, where the problem is just small enough
to fit in the L3 cache. We also see that hyper-threading using eight threads gives a
significant performance gain of about 30-35%.

6.2.2 Energy efficiency

In this section we present energy and energy efficiency measurements for Black-Scholes.
Three metrics are considered: Power, to see what makes the processor consume more
energy; GFLOPS/W, to see the sustained energy efficiency in terms of work done per
unit of energy spent, and the energy-delay product, which takes the running time as
well as the total energy usage into account.

Figure 6.14 shows the average power dissipation in watts (J/s) of the large and
small fixed-size problem for Black-Scholes. The power usage grows more or less linearly
up to four cores, which is as expected as each core is identical to the others. After hyper-
threading comes into effect at five or more cores, power dissipation continues to steadily

58 CHAPTER 6. RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8
Number of threads

15

20

25

30

35

40

45

50

55

60

Po
w

er
 d

is
si

pa
tio

n
(W

at
t)

No vectorization
SSE optimizations
AVX optimizations

(a) N=225

1 2 3 4 5 6 7 8
Number of threads

15

20

25

30

35

40

45

50

55

Po
w

er
 d

is
si

pa
tio

n
(W

at
t)

No vectorization
SSE optimizations
AVX optimizations

(b) N=213

Figure 6.14: Power dissipation with varying number of threads, Black-Scholes

increase. This shows that hyper-threading is not free energy-wise. One question that
remains is if the increased performance from these extra threads is high enough to make
hyper-threading more energy efficient than no hyper-threading.

Interestingly, the power dissipation for the SSE implementation is lower than that
of the scalar one, possibly because the higher computation rate allows the CPU to
sleep more while waiting for memory. The AVX implementation consumes energy at a
slightly higher rate. Power dissipation follows the performance curves in this applica-
tion if we ignore the differences between different vectorizations.

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0

10

20

30

40

50

60

Po
w

er
 d

is
si

pa
tio

n
(W

at
t) 1 thread, no vec.

1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

Figure 6.15: Power dissipation, Black-Scholes

58

6.2. BLACK-SCHOLES RESULTS 59

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

En
er

gy
 e

ffi
ci

en
cy

 (G
FL

OP
S/

W
at

t)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

Figure 6.16: GFLOPS/W, Black-Scholes

In figure 6.15 the power dissipation of Black-Scholes is shown over a range of
problem sizes. Over the whole range, the SSE code has about the same, or sometimes
even smaller, power dissipation compared to the non-vectorized codes. The AVX code
however has a higher power dissipation, up to about 10% more than the non-vectorized
and SSE codes in some places, in particular in the larger problem sizes. It is here that
AVX also shows the greatest speedup, however, so it may still be energy efficient to
use AVX. In the energy efficiency plot in figure 6.16, it is clear that eight threads with
AVX is most energy efficient using this metric. In fact, even a single thread with AVX is
approximately as energy efficient as four threads with SSE, and significantly better than
a single thread with SSE.

Figure 6.17 shows the total energy spent in joules for Black-Scholes. These plots
show that if only looking at energy consumed, running on all cores with hyper-threading
is optimal. Vectorization is also beneficial, especially going from no vectorization to SSE,
which reduces the energy consumption to about 1/3. Although AVX consumes the least
energy, the difference is smaller than figure 6.16 indicates giving only a 25% decrease in
energy consumption at eight threads even though performance is significantly better.

Figure 6.18 shows the normalized energy-delay products (EDP) and energy-delay
squared products (EDD) for Black-Scholes. Note that the plots have a logarithmic scale.
For compactness, the plots for the large and small problem sizes are presented in the
same plot. The EDP and EDD are normalized to the EDP and EDD of the single-
threaded non-vectorized version for the two problem sizes. Here, the benefit of AVX
is more clear compared to figure 6.17, since the time it takes to complete the calculation
(the delay) of the output array is taken into account in addition to the energy usage.

60 CHAPTER 6. RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8
Number of threads

0

10

20

30

40

50

60

En
er

gy
 c

on
su

m
pt

io
n

(J)

No vectorization
SSE optimizations
AVX optimizations

(a) Energy consumed, N=225

1 2 3 4 5 6 7 8
Number of threads

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

En
er

gy
 c

on
su

m
pt

io
n

(J)

No vectorization
SSE optimizations
AVX optimizations

(b) Energy consumed, N=213

Figure 6.17: Energy consumed for the whole problem, Black-Scholes

1 2 3 4 5 6 7 8
Number of threads

10-2

10-1

100

No
rm

al
iz

ed
 E

DP
 (T

im
e*

En
er

gy
)

No vectorization (large problem)
SSE optimizations (large problem)
AVX optimizations (large problem)
No vectorization (small problem)
SSE optimizations (small problem)
AVX optimizations (small problem)

(a) Energy-delay products

1 2 3 4 5 6 7 8
Number of threads

10-3

10-2

10-1

100

No
rm

al
iz

ed
 E

DD
 (T

im
e*

Ti
m

e*
En

er
gy

)

No vectorization (large problem)
SSE optimizations (large problem)
AVX optimizations (large problem)
No vectorization (small problem)
SSE optimizations (small problem)
AVX optimizations (small problem)

(b) Energy-delay squared products

Figure 6.18: Normalized energy-delay products, Black-Scholes

With respect to the EDP and EDD metric, it is clear that for the large problem,
multi-threading is energy efficient also when including hyper-threads, reducing the
EDP by about 70% for the vectorized codes going from one to eight threads. For the
small problem, there appears to be little to no benefit from hyper-threading for the AVX
implementation, and only a slight improvement in the EDP for SSE. However, up to
four threads, the EDP is reduced by about 74%. The EDD product does not appear to
reveal any more information compared to what the EDP did for this application.

For the large problem, the EDP is reduced by 99.55% going from non-vectorized
single-threaded code to AVX with eight threads. For the small problem, the EDP is
reduced by 98.77%.

60

6.3. FFTW 61

6.2.3 Discussion

The small decrease in performance in figure 6.13 after the 8MB memory footprint point
reveals that Black-Scholes is slightly memory bandwidth sensitive; this is not surprising
as the kernel has a constant amount of data reuse per data element, independent of the
problem size. In fact, the ratio of flops to memory reads+writes is a constant 153/7 ≈ 22

with the assumptions in table 5.10 in section 5.3 because the algorithm accesses seven
arrays per iteration. Comparing this to e.g. a level 1 BLAS-operation like SAXPY, y ←
αx + y which has a ratio of 2/3 (assuming that the scalar α is kept in a register), this
number is fairly high, but does not come close to e.g. matrix multiplication, which can
easily apply blocking to decrease the number of slow memory accesses as described in
chapter 3.

Comparing the figures 6.8 and 6.10, we see a significant degradation in perfor-
mance when using Nanos++ version 0.7a instead of the older 0.6a. Additionally, we see
that the preferred task size for 0.7a (256) is smaller than the one for 0.6a (1024). The
speedup from using 0.6a instead of 0.7a is about 1.6x. The reason for the degraded
performance with this version of Nanos++ is unknown. On larger problem sizes, no
performance degradation was observed for Nanos++ 0.7a, likely because it is less sen-
sitive to scheduling due to the abundance of tasks.

6.3 FFTW

In this section, results for performance, energy and energy efficiency are presented for
FFTW using the benchmark described in chapter 4. First, different scheduling algo-
rithms are explored in order to find one that gives good performance. Then perfor-
mance results using this scheduling algorithm is presented, before presenting the en-
ergy measurements through the metrics energy, power, EDP, EDD and GFLOPS/W.

6.3.1 Performance

Figure 6.19 shows the performance of different scheduling algorithms for two fixed
problem sizes for 1 through 8 threads. For the large problem size, the difference is
relatively minor between different scheduling algorithms, although work-first performs
worse than the other two on five and six threads. For the smaller problem size, the
default depth-first scheduling algorithm has the highest performance for 2 through 8
threads, with the exception of two threads without vectorization, and four threads with
AVX. Based on these results, the default scheduling algorithm is used in subsequent
experiments.

In figure 6.20 we see the performance results from FFTW for multi-threading with
a large problem size. We see that the benefit of doing more computations per cycle by
using vector extensions are not as significant for FFTW as it was on Black-Scholes on this
problem size. Only a slightly improved performance is apparent on this problem size
when using AVX instead of SSE. This shows that the performance of FFTW is bound by
the memory bandwidth when the data does not fit inside the caches. Performance do

62 CHAPTER 6. RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8
Number of threads

2

4

6

8

10

12

14

16

18

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vec., default sched.
No vec., DBF sched.
No vec., WF sched.
SSE, default sched.
SSE, DBF sched.
SSE, WF sched.
AVX, default sched.
AVX, DBF sched.
AVX, WF sched.

(a) N=225

1 2 3 4 5 6 7 8
Number of threads

0

5

10

15

20

25

30

35

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vec., default sched.
No vec., DBF sched.
No vec., WF sched.
SSE, default sched.
SSE, DBF sched.
SSE, WF sched.
AVX, default sched.
AVX, DBF sched.
AVX, WF sched.

(b) N=214

Figure 6.19: Performance with different scheduling algorithms, FFTW

1 2 3 4 5 6 7 8
Number of threads

0

2

4

6

8

10

12

14

16

18

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0

2

4

6

8

10

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.20: Performance with regards to number of threads, FFTW, N=225

increase significantly when increasing the number of threads up to four threads how-
ever, which may be due to better utilization of memory bandwidth as more memory
requests can be done in parallel.

Figure 6.21 shows the performance of FFTW for a smaller problem size which fits
in the L2 cache. The performance in terms of GFLOPS is significantly higher compared
to the large problem size. We see a significant increase in performance from using vec-
torized codes; in particular, we see a benefit of the larger vectors in AVX when using 1,
2, 4 or 8 threads. For non-2n number of threads, the performance is degraded; this was
also apparent on the large problem size. We attribute this to the nature of FFTW which
has the highest performance when N is a power of two [78, sec. 4.3.1 and 4.3.3], and
that power-of-two number of threads divides the problem evenly.

Figure 6.22 shows the performance as the problem size increases for one, four and
eight threads. The tabulated data can be found in tables B.9, B.10 and B.11. For all

62

6.3. FFTW 63

1 2 3 4 5 6 7 8
Number of threads

0

5

10

15

20

25

30

35
Pe

rfo
rm

an
ce

 (G
FL

OP
S)

No vectorization
SSE optimizations
AVX optimizations

(a) Performance

1 2 3 4 5 6 7 8
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
(%

)

No vectorization
SSE optimizations
AVX optimizations

(b) Standard deviation

Figure 6.21: Performance with regards to number of threads, FFTW, N=214

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0

10

20

30

40

50

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

(a) Performance

Figure 6.22: Performance of FFTW at different problem sizes

curves, we see a large dip around N = 219. For two arrays of complex single precision
floats, a problem size of N = 219 would consume exactly 8MB of memory, which is
exactly the size of the L3 cache of the system the benchmarks are run on. A blue line
marks the problem size with a 8MB memory footprint.

We also see a dip for the smaller problem sizes for all multi-threaded experiments
around N = 26 and N = 27. We explain this with that the FFTW planner found it more
efficient to run on a single thread up to N = 26. Once FFTW runs on multiple threads,
overheads like task creation and scheduling becomes evident.

64 CHAPTER 6. RESULTS AND DISCUSSION

6.3.2 Energy efficiency

1 2 3 4 5 6 7 8
Number of threads

20

25

30

35

40

45

50

55

60

65

Po
w

er
 d

is
si

pa
tio

n
(W

at
t)

No vectorization
SSE optimizations
AVX optimizations

(a) N=225

1 2 3 4 5 6 7 8
Number of threads

20

25

30

35

40

45

50

55

60

Po
w

er
 d

is
si

pa
tio

n
(W

at
t)

No vectorization
SSE optimizations
AVX optimizations

(b) N=214

Figure 6.23: Power dissipation with varying number of threads, FFTW

Figure 6.23 shows the average power usage in watts (J/s) of the fixed-size prob-
lems for FFTW. As with Black-Scholes, the power usage grows linearly up to four
threads, as expected, since each new thread activates another core. After hyper-threading
comes into effect at five or more cores, no definite increase in power dissipation is seen
before eight threads. We attribute this to the degraded performance for five, six and
seven threads seen in figures 6.20 and 6.21.

As a contrast to what was seen in figure 6.14 where the power dissipation curves
follows the performance curves to a large degree, the fluctuations in performance when
going from four to five threads, or three to four, is not as pronounced for FFTW. We
explain this with that non-power-of-two number of threads give a less optimal subdivi-
sion of the problem, so that more work is done in total to compute the FFT. This causes
each core to do as much work per second as before, but also do more work in total.

An interesting result is that the non-vectorized code uses more energy than the
vectorized one for the large problem in FFTW. One explanation for this is that the activ-
ity in the cores are less for the vectorized codes. FFTW is highly dependent on memory
bandwidth as we see in figure 6.22, and vectorization may simply cause the processor
to be less active as it can do all the work it needs to do in less time, and then go back to
waiting for memory.

In figure 6.25 the power dissipation of FFTW is shown over a range of problem
sizes. As in figure 6.23, the non-vectorized code has the same or higher power dissipa-
tion as SSE, especially on four and eight threads. In fact, on many problem sizes, the
AVX code has a lower power dissipation. Looking at the energy efficiency in figure 6.25,
the single-threaded results show a significant peak at N = 29. At that problem size, the
whole input and output arrays fit in the L1 cache, which may explain this peak. With
AVX, this gives a high GFLOPS rate as the memory bandwidth is very high, while the
power dissipation is fairly low, at little more than 20W.

Looking at the energy consumption in figure 6.26, we see little to no benefit from

64

6.3. FFTW 65

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0

10

20

30

40

50

60

70

Po
w

er
 d

is
si

pa
tio

n
(W

at
t)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

Figure 6.24: Power dissipation, FFTW

multi-threading beyond two threads when it comes to total energy spent to compute
the FFT. Additionally, the AVX implementation appears to use about the same amount
of energy as the SSE one, with the exception of three threads where SSE uses less en-
ergy. For the small problem the single-threaded version spends the least energy; this is
backed up by figure 6.25. Here we also see that for single-threaded execution, AVX is
the most energy efficient choice if we consider the pure energy metric.

Figure 6.27 shows the normalized energy-delay product (EDP) and energy-delay
squared product (EDD). Here we see that for the large problem, the EDP is reduced
by about 75% with four threads compared to one thread without vectorization, which
shows that multi-threading gives a definite improvement in energy efficiency with re-
gard to the EDP. However, no added benefit is gained from hyper-threading. There is
definite improvement in energy efficiency also for the vectorized codes, with about 70%
for four cores versus single-threaded.

The total energy consumption for more than one thread for the small problem
with SSE or AVX is higher than for a single thread. However, the EDP shows a definite
improvement of about 40-50% when going from one thread to four. Going from single-
threaded non-vectorized code to four threads vectorized code gives a 90.36% reduction
for the large problem, and 93.65% reduction for the small problem.

66 CHAPTER 6. RESULTS AND DISCUSSION

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
En

er
gy

 e
ffi

ci
en

cy
 (G

FL
OP

S/
W

at
t)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

Figure 6.25: GFLOPS/W, FFTW

1 2 3 4 5 6 7 8
Number of threads

0

5

10

15

20

25

En
er

gy
 c

on
su

m
pt

io
n

(J)

No vectorization
SSE optimizations
AVX optimizations

(a) Energy consumed, N=225

1 2 3 4 5 6 7 8
Number of threads

0.000

0.005

0.010

0.015

0.020

En
er

gy
 c

on
su

m
pt

io
n

(J)

No vectorization
SSE optimizations
AVX optimizations

(b) Energy consumed, N=214

Figure 6.26: Energy consumed for the whole problem, FFTW

66

6.3. FFTW 67

1 2 3 4 5 6 7 8
Number of threads

10-1

100

No
rm

al
iz

ed
 E

DP
 (T

im
e*

En
er

gy
)

No vectorization (large problem)
SSE optimizations (large problem)
AVX optimizations (large problem)
No vectorization (small problem)
SSE optimizations (small problem)
AVX optimizations (small problem)

(a) Energy-delay products

1 2 3 4 5 6 7 8
Number of threads

10-1

100

No
rm

al
iz

ed
 E

DD
 (T

im
e*

Ti
m

e*
En

er
gy

)

No vectorization (large problem)
SSE optimizations (large problem)
AVX optimizations (large problem)
No vectorization (small problem)
SSE optimizations (small problem)
AVX optimizations (small problem)

(b) Energy-delay squared products

Figure 6.27: Normalized energy-delay products, FFTW

68 CHAPTER 6. RESULTS AND DISCUSSION

6.3.3 Discussion

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0

10

20

30

40

50

60
Pe

rfo
rm

an
ce

 (G
FL

OP
S)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

Figure 6.28: Performance for various problem sizes, FFTW, Nanos++ 0.6a

As with Black-Scholes, running FFTW on version 0.6a of Nanos++ gives better
performance, particularly on the smaller problem sizes. The performance over different
problem sizes is shown in figure 6.28. We see a peak at about 60 GFLOPS, which is
about 10 GFLOPS higher than with 0.7a.

68

6.4. MATRIX MULTIPLICATION 69

6.4 Matrix multiplication

In this section, results for performance, energy and energy efficiency are presented for
matrix multiplication. Due to the large task sizes, scheduling was not found to have
any significant impact; therefore, the default scheduling algorithm is used for this ap-
plication.

6.4.1 Performance

The performance for matrix multiplication was measured, and the results are presented
in figure 6.29 and tabulated in table B.12. The block size for each task was chosen to be
greatest value of b so that 32 ≤ b ≤ 1024, and (N/b)2 ≥ # threads. This ensures that
there are enough tasks available for all threads, as there may at any point exist up to
(N/b)2 tasks that can be performed independently, as there are only (N/b)2 blocks in C
which is shared.

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0

20

40

60

80

100

120

140

160

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

1 thread
4 threads
8 threads

Figure 6.29: Performance and standard deviation for matrix multiplication

The peak performance is significantly higher on matrix-matrix multiply than both
Black-Scholes and FFTW. This is expected because of the high reuse of the data in cache
in the blocked matrix-matrix multiply algorithm, in addition to ATLAS’ autotuning
which chooses the optimal block sizes and other parameters based on benchmarks of
the system during installation. Matrix-matrix multiply can get close to the peak perfor-
mance of the CPU if an efficient algorithm is used because of this high reuse. Running
with more than four threads, i.e. hyper-threading, shows to have a negative impact on
performance.

Multi-threading with four threads always gives a speedup over one core, which
is expected. The speedup becomes higher the larger the matrices become. Why hyper-
threading has a negative effect is likely due to two threads sharing a cache. This results
in a lower reuse because smaller blocks must be used in blocked matrix-matrix multi-

70 CHAPTER 6. RESULTS AND DISCUSSION

ply. Additionally, because parallelization is introduced outside of the ATLAS library,
cache interference will occur because ATLAS will assume that it has 32kB of L1 cache
available, while in reality this cache is shared. Components like the ALU is also shared
between hyper-threads, and since matrix multiplication is mostly bound by the compu-
tational speed of the CPU and not memory bandwidth, hyper-threading would likely
not benefit this application much even if each thread had their own cache.

6.4.2 Energy efficiency

In this section, energy and power measurements and energy efficiency measurements
are presented for matrix multiplication using the four metrics power, energy, GFLOP-
S/W, energy-delay product and energy-delay squared product.

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0

10

20

30

40

50

60

70

80

Po
w

er
 d

is
si

pa
tio

n
(W

at
t)

1 thread
4 threads
8 threads

(a) Power dissipation

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.5

1.0

1.5

2.0
En

er
gy

 e
ffi

ci
en

cy
 (G

FL
OP

S/
W

at
t)

1 thread
4 threads
8 threads

(b) Energy efficiency

Figure 6.30: Power dissipation and energy efficiency, matrix multiplication

In figure 6.30 the power dissipation of matrix multiplication is shown over a range
of problem sizes. The results show that hyper-threading does not use a significant
amount of extra energy. This is can be compared with the performance results, where
running on eight threads gave lower performance. With hyper-threading, the threads
on one core share the ALU, so the power dissipation does not increase since the appli-
cation is compute bound.

With regards to energy efficiency in GFLOPS/W, figure 6.30 shows that for matrix
multiplication, hyper-threading with eight threads performs worst if comparing with
one and four threads. Interestingly, four threads perform better than a single thread
for all problem sizes, while single-threaded execution are optimal with regard to this
metric up to matrices of size 512 × 512. After this, four threads is shown to perform
significantly better.

Figure 6.31 shows the normalized total energy consumption for matrix multiplica-
tion. The numbers were normalized to the single-threaded baseline in order to present
all the numbers in the same graph. Here we see that with eight threads, more energy is
consumed in total for all problem sizes than both four threads, and one thread. As with
the plot in figure 6.30, using a single thread seems to be the most efficient energy-wise
up to and including the problem size 512× 512.

70

6.4. MATRIX MULTIPLICATION 71

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

1 thread
4 threads
8 threads

Figure 6.31: Normalized energy consumption, matrix multiplication

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

100

101

No
rm

al
iz

ed
 E

DP
 (T

im
e*

En
er

gy
)

1 thread
4 threads
8 threads

(a) Energy-delay product (EDP)

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

10-1

100

101

No
rm

al
iz

ed
 E

DD
 (T

im
e*

Ti
m

e*
En

er
gy

)

1 thread
4 threads
8 threads

(b) Energy-delay squared (EDD)

Figure 6.32: Normalized energy-delay products, matrix multiplication

Figure 6.32 shows the normalized energy efficiency as given by the energy-delay
(EDP) product and energy-delay squared (EDD) products. Note that the y-axes are
logarithmic. Using the EDD metric, four threads is shown to be the most energy efficient
for all problem sizes, while eight threads is more energy efficient than a single thread for
large problems. For the largest problem size, the EDP is reduced by about 80% when
going from one to four threads. The EDP and EDD gives different results at the two
smallest problem sizes, where EDD, which favors performance, gives a lower value for
four than one thread, while the results are opposite for the EDP.

73

Chapter 7

Performance Modelling and Discussion

In this chapter, we first present two models for the performance and overhead of the
benchmarked applications. Then, we present a discussion on the impact of vectoriza-
tion, hyper-threading and cache misses in the context of energy efficiency.

7.1 Discussion and Analysis of Performance

In this section, we derive two models for performance and overhead. The first model
describes the task creation and scheduling overhead in Black-Scholes, and uses perfor-
mance numbers from the experiments to test the accuracy of the model. The second
model provides an estimate of the impact of cache misses in all three applications.

7.1.1 Task creation and scheduling

Task scheduling and creation generates extra overhead in the application. The more
tasks there is, the more overhead there are, which is visible in the figures 6.9 and 6.10.
In this section, an estimate for the task scheduling overhead is estimated by creating a
simplified model for the performance for Black-Scholes. Additionally, the impact of the
NX_SPINS variable in the older Nanos++ version is discussed.

Task overhead estimation

Figures 6.9 and 6.10 gives an indication on the overhead of scheduling tasks. Consider-
ing only the overhead from generating and scheduling tasks, and the computation time,
a model can be derived where task scheduling and generation cost is quantified. Let T
be the total running time, Tc be the computation time, Ts be the scheduling overhead,
t be the time required to create and schedule one single task, N be the problem size,
and nt be the task size. Additionally, let Pmax be the maximum performance that can be
achieved given no overhead, i.e. Pmax = 153N/Tc, where 153 is the number of flops per
computed element. Then, the following equations hold:

74 CHAPTER 7. PERFORMANCE MODELLING AND DISCUSSION

Tc =
153N

Pmax

Ts = T − Tc = tN/nt

t =
Ts

(N/nt)

Pmax can be estimated by using a very large task size, so that the task schedul-
ing overhead becomes insignificant. Then, Tc and Ts can be computed, and t can be
estimated. The results with DBF scheduling is seen in figure 7.1. The task size used
to estimate Pmax was 16384 on N = 225. The task scheduling overhead per task, t,
was computed using the non-vectorized code, and then applied to both AVX, SSE and
non-vectorized results, with the assumption that the task scheduling overhead is inde-
pendent of the task execution time.

64 128 256 512 1024 2048
Task size (# elements)

0

10

20

30

40

50

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vec., predicted
No vec., observed
SSE, predicted
SSE, observed
AVX, predicted
AVX, observed

(a) Large problem

64 128 256 512 1024
Task size (# elements)

0

5

10

15

20

25

30

35

40

45

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vec., predicted
No vec., observed
SSE, predicted
SSE, observed
AVX, predicted
AVX, observed

(b) Small problem

Figure 7.1: Predicted vs. Observed performance in Black-Scholes at different task sizes
using Nanos++ v. 0.7a

We see that for the non-vectorized results, the predictions match almost exactly
for the large problem, while it slightly over-estimates for the small problem. For the
large problem, the predictions match fairly well for the vectorized results although the
estimates are slightly lower than the observed performance. For the vectorized results
on the small problem size, the predictions are significantly off. We see a predicted per-
formance of about 42.5 GFLOPS for AVX with the largest task size, but only about 25
GFLOPS is observed. However, looking at figure 6.8, it is apparent that using the old
version of Nanos++, 0.6a, better performance can be achieved. Using these results using
the DBF scheduling algorithm with NX_SPINS set to 1, we get the results in figure 7.2.

In figure 7.2, the predictions for task overhead matches more accurately for the
small problem. This indicates that the simple performance model described above may
be reasonable.

74

7.1. DISCUSSION AND ANALYSIS OF PERFORMANCE 75

64 128 256 512 1024 2048
Task size (# elements)

0

10

20

30

40

50
Pe

rfo
rm

an
ce

 (G
FL

OP
S)

No vec., predicted
No vec., observed
SSE, predicted
SSE, observed
AVX, predicted
AVX, observed

(a) Large problem

64 128 256 512 1024
Task size (# elements)

0

10

20

30

40

50

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

No vec., predicted
No vec., observed
SSE, predicted
SSE, observed
AVX, predicted
AVX, observed

(b) Small problem

Figure 7.2: Predicted vs. Observed performance in Black-Scholes at different task sizes
using Nanos++ v. 0.6a

Impact of NX_SPINS in Nanos++ v. 0.6a

Comparing for instance the figures 6.2 and 6.5, it shows that adjusting the number of
times the scheduler spins before having an idle thread yield has a big impact on both
performance and variability when going to five or more threads, i.e. having up to two
threads per core. Additionally, from figures 6.2, 6.3 and 6.4, it appears that on the default
value of NX_SPINS, the work-first and distributed breadth-first schedulers have less
variability, and perform better than the default scheduler, but on these, setting NX_-

SPINS to 1 seems to have a less dramatical effect.

The distributed breadth-first and work-first schedulers differ from the default sched-
uler in that they implement work-stealing; i.e. if a thread does not have any more ready
tasks in its local thread pool, it will steal tasks from the other threads. As a consequence,
threads will spend less of their time being idle because they will instead simply steal
tasks from the other threads, and thus the NX_SPINS parameter has less impact. The
default scheduling algorithm, however, does not use work stealing, so when a task have
completed all its tasks and there are no more tasks in queue the thread becomes idle.
The scheduler will spin until more work is found for this thread, or until the Nanos++
scheduler makes it yield.

The reason for spinning having such a large performance impact is still unknown.
In Nanos++ 0.7a, setting NX_SPINS to 1 has either no effect, or a negative impact on
performance.

7.1.2 Cache behavior

The cache miss and hit counts were recorded for the L2 and L3 caches using perfor-
mance counters as described in section 5.2.3. The number of main memory accesses is
assumed to be the same as the number of L3 cache misses, and this is used to estimate
overheads due to main memory accesses.

76 CHAPTER 7. PERFORMANCE MODELLING AND DISCUSSION

The main memory accesses to flops-ratio is given as

Rm =
main memory accesses

floating point operations

The number of floating point operations is given in table 5.10 for each application. This
can be used to find out or confirm why we see such a large drop in performance in
some applications like FFTW, but only a slight drop in applications like Black-Scholes,
and barely any drop in performance in matrix multiplication.

Given the memory access latency for main memory, we can estimate the time spent
waiting using a simple model. Assume that the memory access to flops ratioRm is given
as above, and that the maximum performance for a single core is P1,max. Additionally,
assume a latency L, in clock cycles, for retrieving a page from main memory, and let F
be the frequency on which the CPU operates. Then, the overhead is given as

Overhead =
LRm

F/P1,max + LRm

The F/P1,max term gives the number of cycles per flop at peak performance, which
potentially can be far less than one due to instruction level parallelism. LRm is the
number of cycles spent waiting for memory per flop. In other words, F/P1,max + LRm
is the number of cycles spent per flop including the computation time and overheads,
and (F/P1,max+LRm)

−1 is the number of flops per cycle. This model is quite simplified
because it ignores latencies from the L1 through L3 caches and other overheads like
scheduling overheads.

20 22 24 26 28 210 212 214 216 218 220 222 224

Problem size

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

M
em

or
y

ac
ce

ss
es

 p
er

 fl
oa

tin
g

po
in

t o
pe

ra
tio

n

Black-Scholes
FFTW
Matrix multiplication

(a) Main memory accesses per floating point operation

20 22 24 26 28 210 212 214 216 218 220 222 224

Problem size

0

10

20

30

40

50

60

70

80

M
em

or
y

ov
er

he
ad

 (%
)

Black-Scholes
FFTW
Matrix multiplication

(b) Overhead due to main memory accesses

Figure 7.3: Main memory accesses

Figure 7.3 shows the actual main memory accesses per flop, and an estimated over-
head per flop using the models above. Memory accesses per flop is also tabulated in
table B.13. The number of main memory accesses is the same as the number of L3 cache
misses. For the memory access latency, we use an optimistic estimate of two times the
L3 latency, i.e. 62 clock cycles. The maximum computation rate for one thread is esti-
mated to 40 GFLOPS based on the results for matrix multiplication. The graphs clearly

76

7.2. ENERGY EFFICIENCY 77

show that even if the ratio of memory accesses to flops seem modest, for instance 0.0025
for N = 222 for FFTW, the overhead in running time is significant, at about 65%. Black-
Scholes shows only a slight overhead of approximately 5% when the problem no longer
fits in L3, and matrix multiplication shows an even smaller overhead, of about 2.5%;
this is in agreement with the results in chapter 6.

7.2 Energy Efficiency

In this section, the energy efficiency results are discussed. First, the impact of vector-
ization on energy efficiency is discussed. Then, the results from using multi-threading
with or without vectorization, and with and without hyper-threading, is discussed.

7.2.1 Impact of vectorization

The results in section 6.4.2 gives no indication of a higher energy usage when running
with SSE as opposed to running the scalar version of the applications. However, the
codes vectorized with AVX generally has a 5-10% higher energy consumption than
both SSE and non-vectorized codes. Performance-wise, SSE has a potential of up to
four times speedup versus non-vectorized codes for single precision, and AVX have
a potential of up to eight times. This speedup is often not possible to achieve; neither
Black-Scholes or FFTW get speedups of this magnitude, although Black-Scholes is fairly
close, with 3.9x speedup for SSE with one thread, and 6.5x speedup with AVX with one
thread.

Because of the little extra energy spent, both AVX and SSE is very efficient energy-
wise if the application can be efficiently vectorized, like Black-Scholes and FFTW. It is
clearly seen in the results for both these applications that both SSE and AVX is far more
energy efficient than the scalar codes.

7.2.2 Impact of multiple cores and hyper-threading

Figures 6.14 and 6.23 show a near linear increase in power consumption as the number
of threads increase, up to four threads. From four to eight threads, the increase in power
consumption is still linear, but with a smaller coefficient. This is reasonable because each
core has its own set of registers, cache, instruction fetch/decode units, ALU, and so on,
and as such, if there is enough available parallelism, one additional core will become
active if the number of threads are increased by one, giving a constant increase in power
consumption.

As a contrast to vectorization, which uses only a minimal amount of extra energy,
activating another CPU core gives a definite increase in power consumption. In order
for this to be energy efficient, the speedup must make up for the added energy costs.
There are a few ways this can be true.

• A CPU always uses some energy, even when it is not doing any work. Adding
more cores will make this fraction smaller.

78 CHAPTER 7. PERFORMANCE MODELLING AND DISCUSSION

• With more CPU cores, bigger problems can fit in the caches closer to the cores,
increasing performance and most likely also energy efficiency.

• The system as a whole, for instance hard drives, graphics cards, various IO-systems,
the memory system, etc. uses energy. Again adding more cores will make this
fraction smaller. Full system energy measurements are out of scope of this thesis.

7.2.3 Energy usage for large problems

Computing problems that does not fit in the CPU’s cache incur additional energy costs
because data must be fetched from main memory. Even though the energy of the sys-
tem as a whole is not measured in this project, the memory controller is located on the
processor chip, and thus it is possible to measure some of the extra energy spent due
to main memory accesses. Figure 7.4 shows these results. The results are derived by
subtracting the power plane 0 (PP0) and 1 (PP1) from the CPU package energy.

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0

1

2

3

4

5

6

Po
w

er
 d

is
si

pa
tio

n
(W

at
t)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

(a) Black-Scholes

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0

1

2

3

4

5

6

Po
w

er
 d

is
si

pa
tio

n
(W

at
t)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

(b) FFTW

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0

1

2

3

4

5

Po
w

er
 d

is
si

pa
tio

n
(W

at
t)

1 thread
4 threads
8 threads

(c) Matrix multiplication

Figure 7.4: Power usage without cores

For all three applications the pattern is similar. Once the problem no longer fits in
cache, we see an increase in off-core power dissipation. The high-performance configu-
rations with AVX and four to eight threads increase the most, with up to about 1.6-1.8W

78

7.2. ENERGY EFFICIENCY 79

for Black-Scholes and FFTW, and about 1.1W for matrix multiplication. This can be ex-
plained with that if there are more threads, more memory requests can be done simul-
taneously. Additionally, the faster kernels are more limited by the memory bandwidth
so they will issue more requests in a shorter amount of time. Matrix multiplication is
less memory intensive due to cache blocking, which can explain the lower extra power
usage for this application for larger problems.

81

Chapter 8

Conclusion

Energy efficiency and performance results of three task-based programs, Black-Scholes,
FFTW and matrix multiplication, were measured and analyzed. Additionally, the en-
ergy efficiency of the Intel Sandy Bridge and ARM Cortex-A9 CPU used in the bench-
marks were compared; however, these results with conclusion are presented in ap-
pendix A. Energy efficiency was presented using the different metrics, like energy,
power, GFLOPS/W and process-normalized EDP and EDD. The parameters task size
and scheduling policy were optimized for each application.

A comparison of the ARM and Intel CPU was performed, and is presented in
appendix A.

8.1 Scheduling

The scheduling algorithm used for task scheduling was found to have a big significance
on performance for Black-Scholes in Nanos++ 0.6a, and also slightly for FFTW, but was
not found to be very significant for matrix multiplication. The default scheduler was
found to give a very high variation in the performance measurements. However, in
Nanos++ 0.7a, the differences were smaller and the performance more stable, which
was then used for the rest of the experiments.

A series of scheduling algorithms was explored: Depth-first with and without task
stealing (default and work-first algorithms, resp.), and breadth-first with work steal-
ing (distributed breadth-first). Work-first was found to perform worse than distributed
breadth-first or the default depth-first scheduler for all applications, while the default
and DBF scheduler differed only slightly. For FFTW, the default scheduler was found to
be slightly superior, while on Black-Scholes, DBF was found to perform better. Due to
the large tasks in matrix multiplication, scheduling has little impact on that application.

82 CHAPTER 8. CONCLUSION

8.2 Vectorization

It was found that vectorization using SSE and AVX on the Sandy Bridge not only is
very efficient performance-wise, but also with regards to energy efficiency. The vector
instructions were found to consume little to no extra energy per second, while doing
considerably more work per cycle. The performance shows a great improvement in
Black-Scholes when using vectorization, and a smaller but still significant improvement
in FFTW. The total consumed energy is significantly lower and the GFLOPS/W is much
higher using vectorization. The EDP and EDD products show a clear benefit from vec-
torization as well. The performance of Black-Scholes is significantly higher using AVX
instead of SSE, but in FFTW the difference was only minor.

8.3 Multi-threading

FFTW showed the best performance when the number of threads was 1, 2, 4 or 8, with a
maximum at four threads. Black-Scholes got a significant increase in performance from
hyper-threading, while FFTW performed roughly the same with four and eight threads.
Matrix multiplication performed worse with eight threads than with four.

Multi-threading was found to give a smaller energy-delay product for all three ap-
plications, even where the GFLOPS/W peaks at single-threaded execution. For Black-
Scholes, the EDP and EDD was at a minimum at eight threads with AVX. For FFTW and
matrix multiplication, the EDP and EDD is at a minimum at four threads. For FFTW
when N = 214, the optimal with regards to GFLOPS/W was to run with one thread
with AVX, however both two, four and eight threads showed a better EDP and EDD.

8.4 Derived models and discussions

The performance of Black-Scholes at different task sizes was analyzed in order to derive
a model for the performance which includes task creation and scheduling overhead.
The model was found to be quite accurate, differing from the actual results with only
about 10% at most if using Nanos++ 0.6a. However, with Nanos++ 0.7a, while the
results for when N = 225 was accurate, the results was significantly off when a smaller
problem, N = 213 was used.

From the results, FFTW seemed to be significantly more memory bandwidth-bound
than the other applications. By measuring the L3 cache misses using performance coun-
ters, a model for estimating the overhead due to main memory accesses was derived.
When the input and output arrays do not fit in cache, an optimistic estimate of the over-
head due to main memory accesses, ignoring latencies in the L1, L2 and L3 caches, was
close to 70% of the total running time. For Black-Scholes, this overhead was close to 5%,
and for matrix multiplication it was about half, around 2.5%. This fits fairly well with
the observations, which shows only a slight drop in performance for Black-Scholes after
the memory footprint reaches 8MB, a significant drop for FFTW, and no noticeable drop
for matrix multiplication.

82

8.5. CONCLUSION - ARM 83

8.5 Conclusion - ARM

Please see appendix A for the conclusion related to the ARM results.

8.6 Future Work

In this section, possible future work and projects are described.

8.6.1 Full system energy measurement

In this thesis, only the energy spent by the CPU is measured. Although the CPU is one
of the major components with regard to energy usage, many other factors also play a
role. One example is the memory system including the memory modules, I/O devices
and controllers, network controllers, and so on. Future work includes measuring the
system as a whole using energy measurement instruments like the Yokogawa WT210.
Then additional optimizations can be performed which not only considers the CPU and
its caches, but I/O, bus and memory activity as well.

8.6.2 Benchmarks on consumer-grade ARM CPUs and Ivy Bridge

The results in this thesis are based on a development version (test chip) of the ARM
Cortex-A9 MPCore. It may be interesting to also look at consumer versions of the
Cortex-A9 and its successor Cortex-A15 to see if the differences are significant. Ad-
ditionally, nearing the end of the thesis work, Intel Ivy Bridge was released which is the
successor to Sandy Bridge, which promises significantly lower power dissipation for
the same performance as Sandy Bridge.

8.6.3 GPUs and accelerators

Although Intel’s Sandy Bridge CPUs with AVX does utilize larger vectors than previous
generations of vector instructions like SSE or MMX, much larger vector processors exists
in the form of GPUs. An example is NVIDIA’s Fermi architecture which uses 1024-bit
vectors. Additionally, low-power GPUs exists for mobile devices, for instance the ARM
Mali series. The low power embedded GPUs are particularly interesting because of
the Mont Blanc project which aims to create an energy efficient supercomputer using
embedded technology.

8.6.4 Additional applications

In this thesis, only a select few applications are benchmarked. More applications should
be explored in order to build knowledge about for instance when multi-threading pays
off with regards to energy efficiency, and when it doesn’t.

84 CHAPTER 8. CONCLUSION

8.6.5 Energy-efficient algorithms

Traditionally, most emphasis when it comes to optimizing algorithms, is performance.
Very often, performance and energy efficiency is closely related, but in some cases
the optimizations leading to more energy efficient algorithms could impact the perfor-
mance only minimally, or even negatively. Say, for instance, that there is an algorithm
that is significantly bound by memory bandwidth. It seems reasonable that if portions
of the data is prefetched, then do all computations in bulks, we have larger periods
where the CPU frequency may be scaled down (during loads), and scaled back up dur-
ing computations, which could save energy.

8.7 Concluding remarks

The goal of this thesis is to evaluate two current microprocessors, the Intel Sandy Bridge
Core i7 2600, and the ARM Cortex-A9 MPCore quad-core CPU both with respect to per-
formance and energy efficiency using multi-threaded execution as well as vectorization.
Three applications, Black-Scholes, FFTW and dense matrix-matrix multiplication were
chosen, and results are presented for these.

Vectorization gives little to no increase in power dissipation, while giving signif-
icantly higher performance. Multi-threading, while giving higher performance, also
increases energy consumption linearly with the number of cores. Both vectorization
and multi-threading gives a lower EDP, so we conclude that both of these methods of
parallelization are energy efficient.

In Black-Scholes, hyper-threading gives increased performance and energy effi-
ciency for all the metrics presented in this thesis. For FFTW, little to no improvement
is gained from hyper-threading neither for performance nor energy efficiency for any
metric presented. In matrix multiplication, hyper-threading negatively affects both per-
formance and energy efficiency compared to four threads.

Single-threaded execution gives better GFLOPS/W on small problem sizes in FFTW
and matrix multiplication. However, for FFTW, the EDP is smaller with multi-threading
with four threads even for a small problem size likeN = 214 despite higher GFLOPS/W
for a single thread.

84

8.7. CONCLUDING REMARKS 85

Appendices

87

Appendix A

Performance and Energy Efficiency Results -
ARM

The results for ARM are restricted from publishing, and is therefore given out separately
from the report. Please contact the author regarding this chapter.

89

Appendix B

Tabulated Data

This chapter contains the complete data from the experiments whose results were pre-
sented in chapter 6.

Large problem size Small problem size

Task GFLOPS Standard GFLOPS GFLOPS Standard GFLOPS
size (median) deviation (max) (median) deviation (max)

No vectorization

64 6.224 0.071 6.386 6.537 0.046 6.610
128 7.171 0.051 7.231 6.662 0.276 6.694
256 7.678 0.043 7.721 6.722 0.063 6.843
512 7.938 0.040 7.947 6.713 0.065 6.802

1024 8.055 0.051 8.076 6.788 0.342 6.832
2048 8.104 0.043 8.117 4.522 0.038 4.547

SSE optimizations

64 13.940 0.133 14.038 6.102 0.194 6.324
128 20.882 0.487 21.254 17.403 0.274 17.784
256 22.351 0.100 22.451 17.602 0.255 17.986
512 26.437 0.080 26.532 17.400 0.168 17.741

1024 28.576 0.407 28.675 16.843 0.371 17.129
2048 29.185 0.135 29.311 13.909 0.522 14.032

AVX optimizations

64 13.574 0.042 13.651 6.596 0.142 6.833
128 28.473 3.963 29.092 12.874 1.325 16.477
256 32.740 0.295 32.934 26.557 0.425 26.843
512 38.277 1.000 39.062 24.678 0.226 25.171

1024 45.280 2.199 46.699 24.563 1.334 25.906
2048 47.238 1.090 48.470 19.046 0.201 19.273

Table B.1: Black-Scholes, performance with eight threads, DBF scheduling, different
task sizes

90 APPENDIX B. TABULATED DATA

NT RT Energy GFLOPS GFLOPS Standard GFLOPS GFLOPS
(Joule) (median) (mean) deviation (min) (max)

No vectorization

1 3.212 57.369 1.599 1.597 0.005 1.588 1.602
2 1.623 44.730 3.174 3.148 0.051 3.040 3.196
3 1.082 40.734 4.748 4.738 0.028 4.671 4.759
4 0.817 38.972 6.303 6.293 0.034 6.240 6.338
5 0.762 37.637 6.750 6.741 0.031 6.692 6.791
6 0.717 36.632 7.162 7.155 0.075 6.960 7.222
7 0.675 35.608 7.610 7.609 0.030 7.566 7.646
8 0.638 34.713 8.050 8.033 0.046 7.952 8.081

SSE vectorization

1 0.919 16.135 5.607 5.592 0.030 5.533 5.625
2 0.471 13.061 10.920 10.872 0.157 10.617 11.037
3 0.316 11.917 16.397 16.241 0.256 15.787 16.503
4 0.239 11.208 21.660 21.590 0.199 21.347 21.861
5 0.218 10.557 23.575 23.516 0.193 23.215 23.867
6 0.202 10.014 25.565 25.495 0.190 25.229 25.728
7 0.188 9.608 27.425 27.352 0.167 27.076 27.575
8 0.176 9.258 29.172 29.144 0.225 28.735 29.397

AVX vectorization

1 0.580 11.023 8.913 8.904 0.171 8.618 9.115
2 0.304 9.129 16.969 16.957 0.241 16.554 17.353
3 0.203 8.383 25.345 25.333 0.184 25.009 25.584
4 0.154 8.207 33.314 33.203 0.286 32.797 33.677
5 0.143 7.783 35.955 35.908 0.508 35.127 36.460
6 0.133 7.467 38.669 38.551 0.477 37.726 39.230
7 0.125 7.249 41.130 41.131 0.249 40.605 41.468
8 0.118 7.000 43.552 43.669 0.414 43.143 44.327

Table B.2: Black-Scholes performance, N=225, DBF scheduling, task size 2048

90

91

NT RT Energy GFLOPS GFLOPS Standard GFLOPS GFLOPS
(Joule) (median) (mean) deviation (min) (max)

No vectorization

1 7e-04 0.013 1.693 1.691 0.005 1.680 1.694
2 4e-04 0.010 3.096 3.110 0.025 3.088 3.148
3 3e-04 0.010 4.410 4.407 0.010 4.383 4.420
4 2e-04 0.010 5.629 5.626 0.035 5.592 5.698
5 2e-04 0.010 5.747 5.732 0.050 5.651 5.795
6 2e-04 0.010 6.044 6.021 0.050 5.927 6.073
7 2e-04 0.010 6.279 6.272 0.026 6.219 6.304
8 2e-04 0.009 6.774 6.775 0.057 6.702 6.868

SSE optimizations

1 2e-04 0.004 5.554 5.527 0.059 5.393 5.579
2 1e-04 0.003 10.001 9.820 0.493 9.049 10.345
3 1e-04 0.003 12.309 12.267 0.149 11.930 12.517
4 9e-05 0.003 14.717 14.734 0.071 14.635 14.880
5 9e-05 0.003 14.546 14.580 0.179 14.293 14.867
6 8e-05 0.003 15.683 15.734 0.240 15.353 16.170
7 8e-05 0.003 16.380 16.352 0.181 16.042 16.697
8 7e-05 0.003 17.695 17.690 0.295 17.300 18.223

AVX optimizations

1 2e-04 0.003 7.905 7.915 0.030 7.873 7.955
2 8e-05 0.002 15.488 15.134 0.558 14.027 15.658
3 7e-05 0.002 19.666 19.733 1.000 18.464 21.413
4 5e-05 0.002 24.895 24.882 0.738 23.630 25.767
5 5e-05 0.002 23.999 23.899 0.256 23.450 24.181
6 5e-05 0.002 24.234 24.259 0.213 23.888 24.652
7 5e-05 0.002 26.111 26.081 0.258 25.607 26.416
8 5e-05 0.002 26.219 26.182 0.263 25.556 26.576

Table B.3: Black Scholes performance and energy, N=213, DBF scheduling, task size 256

92 APPENDIX B. TABULATED DATA

No vectorization

N GFLOPS Energy GFLOPS Energy GFLOPS Energy
(median) (Joule) (median) (Joule) (median) (Joule)

1 thread 4 threads 8 threads

2 0.164 3e-05 0.009 7e-04 0.009 9e-04
4 0.302 4e-05 0.018 7e-04 0.017 1e-03
8 0.518 4e-05 0.036 7e-04 0.035 9e-04

16 0.692 6e-05 0.103 6e-04 0.084 8e-04
32 0.826 1e-04 0.183 7e-04 0.154 0.001
64 0.909 2e-04 0.259 1e-03 0.263 0.001

128 1.211 3e-04 2.239 4e-04 0.716 0.001
256 1.414 5e-04 2.503 6e-04 2.260 8e-04
512 1.573 9e-04 2.881 0.001 2.986 0.001

1024 1.641 0.002 3.521 0.002 3.691 0.002
2048 1.705 0.003 4.341 0.003 4.673 0.003
4096 1.708 0.006 5.114 0.005 5.813 0.005
8192 1.703 0.013 5.653 0.010 6.747 0.010

16384 1.708 0.026 6.044 0.019 7.527 0.018
32768 1.728 0.051 6.466 0.036 8.091 0.033
65536 1.729 0.100 6.664 0.071 8.433 0.065

131072 1.619 0.215 6.350 0.147 8.137 0.134
262144 1.617 0.433 6.368 0.296 8.175 0.268
524288 1.610 0.871 6.373 0.590 8.238 0.535

1048576 1.614 1.732 6.404 1.183 8.277 1.064
2097152 1.624 3.485 6.388 2.366 8.301 2.132
4194304 1.631 6.847 6.384 4.772 8.150 4.307
8388608 1.602 13.899 6.336 9.546 8.083 8.679

16777216 1.601 27.844 6.333 19.093 8.088 17.322
33554432 1.602 55.562 6.325 38.050 8.106 34.499

Table B.4: Black Scholes performance and energy, DBF scheduling, no vectorization

92

93

SSE vectorization

N GFLOPS Energy GFLOPS Energy GFLOPS Energy
(median) (Joule) (median) (Joule) (median) (Joule)

1 thread 4 threads 8 threads

2 0.342 3e-05 0.019 7e-04 0.020 8e-04
4 0.343 3e-05 0.019 8e-04 0.019 8e-04
8 0.649 3e-05 0.036 7e-04 0.034 9e-04

16 0.944 5e-05 0.069 8e-04 0.077 9e-04
32 1.215 7e-05 0.179 9e-04 0.153 9e-04
64 1.402 1e-04 0.210 0.001 0.260 0.001

128 2.275 2e-04 0.418 0.001 0.472 0.001
256 3.329 2e-04 1.111 1e-03 1.038 0.001
512 4.333 3e-04 8.650 4e-04 3.441 9e-04

1024 5.084 5e-04 9.208 7e-04 8.717 8e-04
2048 5.577 1e-03 9.212 0.001 11.117 0.001
4096 5.620 0.002 12.027 0.002 14.364 0.002
8192 5.596 0.004 14.769 0.004 17.741 0.003

16384 5.743 0.008 17.295 0.006 20.804 0.006
32768 5.970 0.015 19.286 0.011 24.410 0.010
65536 5.967 0.029 21.268 0.021 27.493 0.018

131072 5.688 0.061 21.260 0.042 28.312 0.035
262144 5.282 0.129 21.227 0.086 28.696 0.071
524288 5.243 0.263 21.433 0.173 28.781 0.145

1048576 5.239 0.525 21.676 0.345 29.252 0.285
2097152 5.266 1.053 21.523 0.691 29.479 0.569
4194304 5.573 2.089 21.691 1.374 28.935 1.157
8388608 5.584 4.044 21.484 2.788 28.750 2.323

16777216 5.598 8.008 21.608 5.524 28.937 4.594
33554432 5.589 16.091 21.724 10.940 29.210 9.120

Table B.5: Black Scholes performance and energy, DBF scheduling, SSE optimized

94 APPENDIX B. TABULATED DATA

AVX vectorization

N GFLOPS Energy GFLOPS Energy GFLOPS Energy
(median) (Joule) (median) (Joule) (median) (Joule)

1 thread 4 threads 8 threads

2 0.674 3e-05 0.034 8e-04 0.037 9e-04
4 0.672 3e-05 0.035 8e-04 0.039 9e-04
8 0.675 3e-05 0.035 8e-04 0.038 9e-04

16 0.991 5e-05 0.067 8e-04 0.095 8e-04
32 1.296 7e-05 0.134 9e-04 0.193 8e-04
64 1.505 1e-04 0.198 0.001 0.321 0.001

128 2.593 1e-04 0.403 0.001 0.500 0.001
256 4.007 2e-04 0.936 0.001 0.987 0.001
512 5.592 3e-04 2.499 9e-04 2.080 0.001

1024 6.962 4e-04 14.752 5e-04 7.757 9e-04
2048 7.918 7e-04 15.054 8e-04 15.617 9e-04
4096 8.001 0.001 20.602 0.001 20.650 0.002
8192 7.945 0.003 25.088 0.002 26.323 0.002

16384 8.020 0.006 24.564 0.005 31.133 0.004
32768 8.464 0.011 27.808 0.008 36.714 0.007
65536 8.466 0.021 31.576 0.015 42.342 0.013

131072 8.206 0.044 33.070 0.030 44.849 0.024
262144 8.025 0.090 33.298 0.060 46.124 0.049
524288 7.943 0.183 33.266 0.123 44.827 0.104

1048576 7.955 0.369 33.858 0.245 46.087 0.204
2097152 8.645 0.687 33.682 0.492 46.348 0.407
4194304 9.212 1.320 33.715 0.982 46.432 0.815
8388608 9.353 2.592 34.245 1.930 46.195 1.642

16777216 9.459 5.108 35.011 3.824 46.290 3.261
33554432 9.574 10.117 35.617 7.620 47.056 6.406

Table B.6: Black Scholes performance and energy, DBF scheduling, AVX optimized

94

95

NT RT Energy GFLOPS GFLOPS Standard GFLOPS GFLOPS
(Joule) (median) (mean) deviation (min) (max)

No vectorization

1 1.258 26.694 3.336 3.329 0.040 3.247 3.400
2 0.666 21.781 6.297 6.287 0.084 6.105 6.383
3 0.507 22.511 8.278 8.261 0.099 8.028 8.379
4 0.371 20.779 11.390 11.367 0.126 11.119 11.511
5 0.414 22.600 10.603 10.142 0.685 8.845 10.735
6 0.410 22.604 10.553 10.455 0.644 9.170 11.350
7 0.433 24.281 9.726 9.652 0.357 8.721 10.031
8 0.358 21.751 11.709 11.698 0.080 11.586 11.837

SSE vectorization

1 0.766 15.471 5.474 5.478 0.022 5.450 5.529
2 0.404 12.989 10.407 10.333 0.203 10.042 10.563
3 0.352 14.693 11.910 11.789 0.411 10.681 12.105
4 0.247 13.279 17.009 17.005 0.255 16.512 17.332
5 0.354 17.274 11.920 12.541 1.161 11.216 14.265
6 0.314 16.339 13.524 13.340 0.700 11.641 14.097
7 0.318 16.631 13.202 13.339 1.194 11.526 15.151
8 0.242 13.859 17.395 17.380 0.116 17.155 17.524

AVX vectorization

1 0.743 15.846 5.665 5.678 0.056 5.622 5.794
2 0.391 12.777 10.747 10.718 0.123 10.538 10.871
3 0.376 16.675 11.278 11.188 0.163 10.941 11.377
4 0.242 13.403 17.375 17.425 0.285 17.026 17.992
5 0.339 16.959 12.525 12.602 0.961 11.161 14.527
6 0.305 16.057 14.387 14.073 1.110 11.837 15.935
7 0.302 16.503 14.212 13.557 1.355 11.283 14.881
8 0.236 13.734 17.792 17.756 0.177 17.393 18.002

Table B.7: FFTW performance and energy, N=225, default scheduling

96 APPENDIX B. TABULATED DATA

NT RT Energy GFLOPS GFLOPS Standard GFLOPS GFLOPS
(Joule) (median) (mean) deviation (min) (max)

No vectorization

1 0.001 0.021 5.211 5.195 0.030 5.127 5.219
2 6e-04 0.018 9.109 9.064 0.091 8.865 9.121
3 6e-04 0.022 9.452 9.445 0.035 9.391 9.514
4 3e-04 0.018 14.815 14.799 0.100 14.623 14.948
5 4e-04 0.020 12.880 12.890 0.126 12.673 13.076
6 4e-04 0.020 13.382 13.400 0.083 13.294 13.542
7 4e-04 0.022 12.558 12.522 0.141 12.261 12.706
8 3e-04 0.020 14.857 14.826 0.095 14.595 14.947

SSE optimizations

1 4e-04 0.008 13.383 13.386 0.115 13.147 13.520
2 3e-04 0.008 18.560 18.560 0.227 18.241 18.989
3 2e-04 0.009 22.004 22.009 0.179 21.744 22.253
4 2e-04 0.009 27.526 27.576 0.206 27.290 27.955
5 3e-04 0.013 18.105 18.167 0.353 17.718 18.789
6 2e-04 0.010 25.678 25.602 0.271 25.136 26.057
7 3e-04 0.012 20.515 20.294 0.522 19.019 20.744
8 2e-04 0.009 30.561 30.393 0.523 29.153 30.845

AVX optimizations

1 3e-04 0.007 16.519 16.532 0.116 16.292 16.713
2 2e-04 0.007 23.039 23.056 0.343 22.701 23.650
3 3e-04 0.010 18.577 18.557 0.101 18.337 18.677
4 2e-04 0.008 31.310 31.479 0.819 30.628 33.135
5 3e-04 0.012 19.340 19.286 0.220 18.911 19.536
6 3e-04 0.013 19.022 19.032 0.157 18.719 19.327
7 3e-04 0.013 20.211 20.131 0.252 19.660 20.486
8 2e-04 0.009 31.898 31.875 0.213 31.551 32.259

Table B.8: FFTW performance and energy, N=214, default scheduling

96

97

No vectorization

N GFLOPS Energy GFLOPS Energy GFLOPS Energy
(median) (Joule) (median) (Joule) (median) (Joule)

1 thread 4 threads 8 threads

2 0.254 0.0 0.244 0.0 0.245 0.0
4 0.935 0.0 0.936 0.0 0.900 0.0
8 2.191 0.0 2.237 0.0 2.258 0.0

16 4.098 0.0 4.090 0.0 3.889 0.0
32 5.286 0.0 5.220 1e-05 5.050 1e-05
64 6.114 1e-05 6.071 1e-05 5.655 1e-05

128 5.975 2e-05 0.258 6e-04 0.105 0.002
256 6.169 4e-05 0.561 6e-04 0.184 0.002
512 5.761 9e-05 1.120 7e-04 0.405 0.003

1024 5.937 2e-04 1.981 9e-04 0.779 0.003
2048 5.827 4e-04 3.166 0.001 2.404 0.002
4096 5.507 9e-04 4.816 0.002 4.662 0.003
8192 5.437 0.002 5.738 0.004 6.536 0.004

16384 5.259 0.005 8.360 0.006 8.335 0.007
32768 5.096 0.010 11.746 0.010 10.881 0.013
65536 4.886 0.023 14.015 0.020 14.121 0.023

131072 4.909 0.049 16.352 0.039 16.953 0.040
262144 4.790 0.103 17.195 0.080 16.464 0.089
524288 3.363 0.306 12.289 0.234 12.846 0.249

1048576 3.292 0.657 11.248 0.525 11.771 0.554
2097152 3.275 1.398 11.299 1.107 11.807 1.157
4194304 3.279 2.931 11.554 2.303 12.060 2.413
8388608 3.328 6.039 11.384 4.904 11.765 5.163

16777216 3.335 12.480 11.348 10.334 11.468 11.063
33554432 3.259 26.895 11.043 21.520 11.365 22.858

Table B.9: FFTW performance and energy, default scheduling, no vectorization

98 APPENDIX B. TABULATED DATA

SSE vectorization

N GFLOPS Energy GFLOPS Energy GFLOPS Energy
(median) (Joule) (median) (Joule) (median) (Joule)

1 thread 4 threads 8 threads

2 0.253 0.0 0.251 0.0 0.223 0.0
4 0.901 0.0 0.894 0.0 0.858 0.0
8 2.301 0.0 2.280 0.0 2.096 0.0

16 4.556 0.0 4.515 0.0 4.298 0.0
32 9.458 0.0 6.614 0.0 6.272 0.0
64 13.608 0.0 8.362 1e-05 5.582 1e-05

128 17.434 1e-05 9.283 2e-05 8.696 2e-05
256 17.843 1e-05 1.282 3e-04 0.435 0.001
512 20.936 2e-05 1.261 6e-04 0.992 0.001

1024 20.348 5e-05 2.365 7e-04 0.851 0.002
2048 19.965 1e-04 5.005 8e-04 1.585 0.003
4096 18.554 3e-04 7.527 0.001 4.579 0.002
8192 14.975 8e-04 11.109 0.002 10.526 0.002

16384 14.149 0.002 11.867 0.004 16.003 0.004
32768 12.988 0.004 20.138 0.005 20.923 0.006
65536 11.912 0.009 25.960 0.009 29.474 0.009

131072 12.661 0.018 32.821 0.017 37.526 0.017
262144 12.165 0.041 36.904 0.035 36.930 0.037
524288 5.519 0.181 19.637 0.139 20.902 0.144

1048576 5.392 0.394 17.308 0.329 18.282 0.335
2097152 5.456 0.814 16.995 0.694 17.475 0.729
4194304 5.519 1.703 16.421 1.533 16.974 1.577
8388608 5.612 3.498 16.501 3.168 16.538 3.356

16777216 5.388 7.575 17.105 6.459 17.163 6.832
33554432 5.331 16.191 16.361 13.750 16.794 14.413

Table B.10: FFTW performance and energy, default scheduling, SSE optimized

98

99

AVX vectorization

N GFLOPS Energy GFLOPS Energy GFLOPS Energy
(median) (Joule) (median) (Joule) (median) (Joule)

1 thread 4 threads 8 threads

2 0.257 0.0 0.253 0.0 0.244 0.0
4 0.904 0.0 0.900 0.0 0.863 0.0
8 2.395 0.0 2.255 0.0 2.125 0.0

16 4.006 0.0 3.949 0.0 3.773 0.0
32 6.681 0.0 5.301 1e-05 5.061 1e-05
64 15.750 0.0 5.921 1e-05 5.613 1e-05

128 21.957 0.0 0.532 3e-04 0.232 8e-04
256 27.542 1e-05 0.567 6e-04 0.384 0.001
512 30.896 2e-05 1.268 6e-04 0.964 0.001

1024 30.425 4e-05 2.606 7e-04 0.795 0.003
2048 27.802 9e-05 4.843 9e-04 1.647 0.003
4096 24.563 2e-04 8.399 0.001 4.472 0.003
8192 21.036 6e-04 12.902 0.002 10.838 0.002

16384 19.224 0.001 17.781 0.003 18.677 0.003
32768 17.571 0.003 26.653 0.004 27.205 0.005
65536 16.705 0.007 30.926 0.008 32.464 0.009

131072 16.709 0.015 29.658 0.018 44.852 0.015
262144 16.395 0.032 48.895 0.029 49.018 0.030
524288 6.063 0.167 20.239 0.137 22.642 0.136

1048576 5.866 0.364 18.275 0.317 19.247 0.324
2097152 5.895 0.763 17.733 0.685 17.959 0.724
4194304 5.972 1.585 17.761 1.441 17.692 1.559
8388608 6.066 3.262 17.459 3.063 17.928 3.129

16777216 5.832 7.068 17.820 6.359 17.297 6.830
33554432 5.727 15.257 17.434 13.359 17.717 13.800

Table B.11: FFTW performance and energy, default scheduling, AVX optimized

AVX vectorization

N GFLOPS Energy GFLOPS Energy GFLOPS Energy
(median) (Joule) (median) (Joule) (median) (Joule)

1 thread 4 threads 8 threads

128 11.512 0.008 18.387 0.013 15.506 0.016
256 26.416 0.029 41.570 0.051 22.645 0.098
512 37.988 0.173 97.429 0.186 44.674 0.422

1024 38.092 1.380 137.919 1.129 89.614 1.753
2048 38.703 10.876 138.927 9.019 107.773 11.931
4096 38.997 87.143 145.579 70.305 112.032 92.902
8192 39.096 698.125 149.213 553.921 114.667 734.739

Table B.12: Matrix multiplication performance and energy, default scheduling, AVX
optimized

100 APPENDIX B. TABULATED DATA

Black-Scholes FFTW Matrix multiplication

Problem Memory Accesses Memory Accesses Memory Accesses
size use per flop use per flop use per flop

21 0.05 KB 0.0 0.03 KB 0.0 - -
22 0.11 KB 0.0 0.06 KB 0.0 - -
23 0.22 KB 0.0 0.13 KB 0.0 - -
24 0.44 KB 0.0 0.25 KB 0.0 - -
25 0.88 KB 0.0 0.5 KB 0.0 - -
26 1.75 KB 0.0 1.0 KB 0.0 - -
27 3.5 KB 0.0 2.0 KB 0.0 192.0 KB 0.0
28 7.0 KB 0.0 4.0 KB 0.0 768.0 KB 0.0
29 14.0 KB 0.0 8.0 KB 0.0 3.0 MB 2e-06
210 28.0 KB 0.0 16.0 KB 0.0 12.0 MB 3e-05
211 56.0 KB 0.0 32.0 KB 0.0 48.0 MB 3.8e-05
212 112.0 KB 0.0 64.0 KB 0.0 192.0 MB 3.8e-05
213 224.0 KB 0.0 128.0 KB 0.0 768.0 MB 3.6e-05
214 448.0 KB 0.0 256.0 KB 0.0 - -
215 896.0 KB 0.0 512.0 KB 0.0 - -
216 1.75 MB 0.0 1.0 MB 0.0 - -
217 3.5 MB 1e-06 2.0 MB 2e-06 - -
218 7.0 MB 4.7e-05 4.0 MB 7.3e-05 - -
219 14.0 MB 0.000123 8.0 MB 0.000494 - -
220 28.0 MB 0.000145 16.0 MB 0.002005 - -
221 56.0 MB 0.000115 32.0 MB 0.00285 - -
222 112.0 MB 9.2e-05 64.0 MB 0.002606 - -
223 224.0 MB 8.3e-05 128.0 MB 0.002279 - -
224 448.0 MB 8e-05 256.0 MB 0.003502 - -
225 896.0 MB 7.2e-05 512.0 MB 0.002144 - -

Table B.13: Memory accesses per flop

100

101

Appendix C

AVX Enabled Logarithms and Exponential
Functions

1 /*
2 BEGIN MODIFICATIONS
3 AVX additions made by Hallgeir Lien (hallgeir.lien@gmail.com)
4 */
5 #ifdef USE_AVX
6 #include <immintrin.h>
7 #include "icc_gcc_compat.h"
8

9 typedef __m256 v8sf;
10 typedef __m256i v8si;
11

12 /* natural logarithm computed for 8 simultaneous float
13 return NaN for x <= 0
14 */
15 v8sf log256_ps(v8sf x) {
16 v8si emm0;
17 v8sf one = *(v8sf*)_256ps_1;
18

19 v8sf invalid_mask = _mm256_cmple_ps(x, _mm256_setzero_ps());
20 x = _mm256_max_ps(x, *(v8sf*)_256ps_min_norm_pos); /* cut off denormalized stuff */
21 //256 bit shift is not implemented yet; do two 128 bit shifts
22 {
23 v4si emm01 = _mm_srli_epi32(_mm_castps_si128(_mm256_extractf128_ps(x, 0)), 23);
24 v4si emm02 = _mm_srli_epi32(_mm_castps_si128(_mm256_extractf128_ps(x, 1)), 23);
25 //256 bit arithmetic not implemented... do it separately
26 emm01 = _mm_sub_epi32(emm01, *(v4si*)_pi32_0x7f);
27 emm02 = _mm_sub_epi32(emm02, *(v4si*)_pi32_0x7f);
28

29 emm0 = _mm256_insertf128_si256(emm0, emm01, 0);
30 emm0 = _mm256_insertf128_si256(emm0, emm02, 1);
31 }
32

33 /* keep only the fractional part */
34 x = _mm256_and_ps(x, *(v8sf*)_256ps_inv_mant_mask);
35 x = _mm256_or_ps(x, *(v8sf*)_256ps_0p5);
36 v8sf e = _mm256_cvtepi32_ps(emm0);
37

38 e = _mm256_add_ps(e, one);
39 /* part2:
40 if(x < SQRTHF) {

102 APPENDIX C. AVX ENABLED LOGARITHMS AND EXPONENTIAL FUNCTIONS

41 e -= 1;
42 x = x + x - 1.0;
43 } else { x = x - 1.0; }
44 */
45 v8sf mask = _mm256_cmplt_ps(x, *(v8sf*)_256ps_cephes_SQRTHF);
46 v8sf tmp = _mm256_and_ps(x, mask);
47 x = _mm256_sub_ps(x, one);
48 e = _mm256_sub_ps(e, _mm256_and_ps(one, mask));
49 x = _mm256_add_ps(x, tmp);
50

51

52 v8sf z = _mm256_mul_ps(x,x);
53

54 v8sf y = *(v8sf*)_256ps_cephes_log_p0;
55 y = _mm256_mul_ps(y, x);
56 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_log_p1);
57 y = _mm256_mul_ps(y, x);
58 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_log_p2);
59 y = _mm256_mul_ps(y, x);
60 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_log_p3);
61 y = _mm256_mul_ps(y, x);
62 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_log_p4);
63 y = _mm256_mul_ps(y, x);
64 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_log_p5);
65 y = _mm256_mul_ps(y, x);
66 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_log_p6);
67 y = _mm256_mul_ps(y, x);
68 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_log_p7);
69 y = _mm256_mul_ps(y, x);
70 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_log_p8);
71 y = _mm256_mul_ps(y, x);
72

73 y = _mm256_mul_ps(y, z);
74

75

76 tmp = _mm256_mul_ps(e, *(v8sf*)_256ps_cephes_log_q1);
77 y = _mm256_add_ps(y, tmp);
78

79

80 tmp = _mm256_mul_ps(z, *(v8sf*)_256ps_0p5);
81 y = _mm256_sub_ps(y, tmp);
82

83 tmp = _mm256_mul_ps(e, *(v8sf*)_256ps_cephes_log_q2);
84 x = _mm256_add_ps(x, y);
85 x = _mm256_add_ps(x, tmp);
86 x = _mm256_or_ps(x, invalid_mask); // negative arg will be NAN
87 return x;
88 }
89

90 v8sf exp256_ps(v8sf x) {
91 v8sf tmp = _mm256_setzero_ps(), fx;
92 v8si emm0 = _mm256_setzero_si256();
93 v8sf one = *(v8sf*)_256ps_1;
94

95 x = _mm256_min_ps(x, *(v8sf*)_256ps_exp_hi);
96 x = _mm256_max_ps(x, *(v8sf*)_256ps_exp_lo);
97

98 /* express exp(x) as exp(g + n*log(2)) */
99 fx = _mm256_mul_ps(x, *(v8sf*)_256ps_cephes_LOG2EF);

100 fx = _mm256_add_ps(fx, *(v8sf*)_256ps_0p5);
101

102 /* how to perform a floorf with SSE: just below */
103 emm0 = _mm256_cvttps_epi32(fx);
104 tmp = _mm256_cvtepi32_ps(emm0);

102

103

105 /* if greater, substract 1 */
106 v8sf mask = _mm256_cmpgt_ps(tmp, fx);
107 mask = _mm256_and_ps(mask, one);
108 fx = _mm256_sub_ps(tmp, mask);
109

110 tmp = _mm256_mul_ps(fx, *(v8sf*)_256ps_cephes_exp_C1);
111 v8sf z = _mm256_mul_ps(fx, *(v8sf*)_256ps_cephes_exp_C2);
112 x = _mm256_sub_ps(x, tmp);
113 x = _mm256_sub_ps(x, z);
114

115 z = _mm256_mul_ps(x,x);
116

117 v8sf y = *(v8sf*)_256ps_cephes_exp_p0;
118 y = _mm256_mul_ps(y, x);
119 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_exp_p1);
120 y = _mm256_mul_ps(y, x);
121 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_exp_p2);
122 y = _mm256_mul_ps(y, x);
123 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_exp_p3);
124 y = _mm256_mul_ps(y, x);
125 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_exp_p4);
126 y = _mm256_mul_ps(y, x);
127 y = _mm256_add_ps(y, *(v8sf*)_256ps_cephes_exp_p5);
128 y = _mm256_mul_ps(y, z);
129 y = _mm256_add_ps(y, x);
130 y = _mm256_add_ps(y, one);
131

132 /* build 2^n */
133 emm0 = _mm256_cvttps_epi32(fx);
134 {
135 v4si emm01 = _mm_slli_epi32(_mm_add_epi32(_mm256_extractf128_si256(emm0, 0), *(

v4si*)_pi32_0x7f), 23),
136 emm02 = _mm_slli_epi32(_mm_add_epi32(_mm256_extractf128_si256(emm0, 1), *(

v4si*)_pi32_0x7f), 23);
137

138 emm0 = _mm256_insertf128_si256(emm0, emm01, 0);
139 emm0 = _mm256_insertf128_si256(emm0, emm02, 1);
140 }
141 v8sf pow2n = _mm256_castsi256_ps(emm0);
142 y = _mm256_mul_ps(y, pow2n);
143

144 return y;
145 }
146 #endif
147 /*
148 END MODIFICATIONS
149 */

105

Appendix D

NEON Enabled Logarithms and
Exponential Functions

1 static inline float32x4_t log128_neon_intrin(float32x4_t x)
2 {
3 //compute invalid mask
4 uint32x4_t invalid_mask = vcltq_f32(x, vdupq_n_f32(0.f)),
5 tmp2, mask;
6 int32x4_t tmp1;
7

8 float32x4_t e, y, z, tmp1f;
9

10 //cut off denormalized stuff
11 x = vmaxq_f32(x, vreinterpretq_f32_u32(vdupq_n_u32(0x00800000)));
12

13 //Shift left by 23 bits
14 tmp1 = vshrq_n_s32(vreinterpretq_s32_f32(x), 23);
15

16 //Bitwise-AND with inverse mantissa mask
17 //(Keep only fractional part)
18 tmp2 = vandq_u32(vreinterpretq_u32_f32(x), vdupq_n_u32(0x807fffff));
19 tmp2 = vorrq_u32(tmp2, vreinterpretq_u32_f32(vdupq_n_f32(0.5f)));
20 x = vreinterpretq_f32_u32(tmp2);
21

22 tmp1 = vsubq_s32(tmp1, vdupq_n_s32(0x7f));
23 e = vcvtq_f32_s32(tmp1);
24

25 e = vaddq_f32(e, vdupq_n_f32(1.0f));
26

27 mask = vcltq_f32(x, vdupq_n_f32(0.707106781186547524f));
28 tmp2 = vandq_u32(vreinterpretq_u32_f32(x), mask);
29 x = vsubq_f32(x, vdupq_n_f32(1.0f));
30 e = vsubq_f32(e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(vdupq_n_f32

(1.0f)), mask)));
31 x = vaddq_f32(x, vreinterpretq_f32_u32(tmp2));
32

33 z = vmulq_f32(x,x);
34

35 y = vdupq_n_f32(7.0376836292E-2); //p0
36 y = vmulq_f32(y, x);
37 y = vaddq_f32(y, vdupq_n_f32(-1.1514610310E-1)); //p1
38 y = vmulq_f32(y, x);
39 y = vaddq_f32(y, vdupq_n_f32(1.1676998740E-1)); //p2

106 APPENDIX D. NEON ENABLED LOGARITHMS AND EXPONENTIAL FUNCTIONS

40 y = vmulq_f32(y, x);
41 y = vaddq_f32(y, vdupq_n_f32(-1.2420140846E-1)); //p3
42 y = vmulq_f32(y, x);
43 y = vaddq_f32(y, vdupq_n_f32(1.4249322787E-1)); //p4
44 y = vmulq_f32(y, x);
45 y = vaddq_f32(y, vdupq_n_f32(-1.6668057665E-1)); //p5
46 y = vmulq_f32(y, x);
47 y = vaddq_f32(y, vdupq_n_f32(2.0000714765E-1)); //p6
48 y = vmulq_f32(y, x);
49 y = vaddq_f32(y, vdupq_n_f32(-2.4999993993E-1)); //p7
50 y = vmulq_f32(y, x);
51 y = vaddq_f32(y, vdupq_n_f32(3.3333331174E-1)); //p8
52 y = vmulq_f32(y, x);
53

54 y = vmulq_f32(y, z);
55

56 tmp1f = vmulq_f32(e, vdupq_n_f32(-2.12194440e-4));
57 y = vaddq_f32(y, tmp1f);
58

59 tmp1f = vmulq_f32(z, vdupq_n_f32(0.5f));
60 y = vsubq_f32(y, tmp1f);
61

62 tmp1f = vmulq_f32(e, vdupq_n_f32(0.693359375));
63 x = vaddq_f32(x, y);
64 x = vaddq_f32(x, tmp1f);
65 x = vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(x), invalid_mask));
66

67 return x;
68 }
69

70 static inline float32x4_t exp128_neon_intrin(float32x4_t x)
71 {
72 float32x4_t fx, tmp1f, y, z;
73 uint32x4_t mask;
74 int32x4_t tmp1i;
75

76 x = vminq_f32(x, vdupq_n_f32(88.3762626647949f));
77 x = vmaxq_f32(x, vdupq_n_f32(-88.3762626647949f));
78 fx = vmulq_f32(x, vdupq_n_f32(1.44269504088896341));
79 fx = vaddq_f32(fx, vdupq_n_f32(0.5));
80

81 tmp1f = vcvtq_f32_s32(vcvtq_s32_f32(fx));
82 mask = vcgtq_f32(tmp1f, fx);
83 mask = vandq_u32(mask, vreinterpretq_u32_f32(vdupq_n_f32(1.0f)));
84

85 fx = vsubq_f32(tmp1f, vreinterpretq_f32_u32(mask));
86

87 tmp1f = vmulq_f32(fx, vdupq_n_f32(0.693359375));
88 z = vmulq_f32(fx, vdupq_n_f32(-2.12194440e-4f));
89 x = vsubq_f32(x, tmp1f);
90 x = vsubq_f32(x, z);
91

92 z = vmulq_f32(x,x);
93

94 y = vdupq_n_f32(1.9875691500E-4f); //p0
95 y = vmulq_f32(y, x);
96 y = vaddq_f32(y, vdupq_n_f32(1.3981999507E-3f));//p1
97 y = vmulq_f32(y, x);
98 y = vaddq_f32(y, vdupq_n_f32(8.3334519073E-3f));//p2
99 y = vmulq_f32(y, x);

100 y = vaddq_f32(y, vdupq_n_f32(4.1665795894E-2f));//p3
101 y = vmulq_f32(y, x);
102 y = vaddq_f32(y, vdupq_n_f32(1.6666665459E-1f));//p4
103 y = vmulq_f32(y, x);

106

107

104 y = vaddq_f32(y, vdupq_n_f32(5.0000001201E-1f));//p5
105 y = vmulq_f32(y, z);
106 y = vaddq_f32(y, x);
107 y = vaddq_f32(y, vdupq_n_f32(1.0f));
108

109 tmp1i = vcvtq_s32_f32(fx);
110 tmp1i = vaddq_s32(tmp1i, vdupq_n_s32(0x7f));
111 tmp1i = vshlq_n_s32(tmp1i, 23);
112

113 tmp1f = vreinterpretq_f32_s32(tmp1i);
114 x = vmulq_f32(y, tmp1f);
115

116 return x;
117 }

109

Appendix E

SSE, AVX and NEON Accellerated
Black-Scholes - Source code

This appendix contains the source code for the relevant parts of the vectorized and
OmpSs-parallelized implementation of Black-Scholes.

Listing E.1 Outer loop in Black-Scholes

1 for (ii = 0; ii < array_size; ii+=local_work_group_size)
2 {
3 #pragma omp task private (i)
4 {
5 for (i=ii; (i<ii+local_work_group_size) && (i<array_size); i+=vector_width)
6 {
7 #if defined(AVX)
8 bsop_avx(&answer_fptr[i], &cpflag_fptr[i], &S0_fptr[i], &K_fptr[i], &r_fptr

[i], &sigma_fptr[i], &T_fptr[i]);
9 _mm256_zeroupper();
10 #elif defined(SSE)
11 bsop_sse(&answer_fptr[i], &cpflag_fptr[i], &S0_fptr[i], &K_fptr[i], &r_fptr

[i], &sigma_fptr[i], &T_fptr[i]);
12 #elif defined(NEON_INTRIN)
13 bsop_intrin(&answer_fptr[i], &cpflag_fptr[i], &S0_fptr[i], &K_fptr[i], &

r_fptr[i], &sigma_fptr[i], &T_fptr[i]);
14 #else
15 answer_fptr[i] = bsop_reference_float(cpflag_fptr[i], S0_fptr[i], K_fptr[i

], r_fptr[i], sigma_fptr[i], T_fptr[i]);
16 #endif
17 }
18 }
19 }

110APPENDIX E. SSE, AVX AND NEON ACCELLERATED BLACK-SCHOLES - SOURCE CODE

Listing E.2 Black-Scholes formula evaluation, SSE

1 inline void bsop_sse(float* answer, unsigned int* cpflag, float* S0, float* K, float* r
, float* sigma, float* T) {

2 __m128 _d1, _d2, _c, _p, _Nd1, _Nd2, _expval, _answer, _tmp1, _T, _sigma, _K, _r,
_S0;

3

4 __m128 _pt5,
5 _one,
6 _zero;
7 _pt5 = _mm_set1_ps(.5);
8 _one = _mm_set1_ps(1),
9 _zero = _mm_set1_ps(0);
10

11 //Loads
12 _T = _mm_loadu_ps(T);
13 _sigma = _mm_loadu_ps(sigma);
14 _K = _mm_loadu_ps(K);
15 _r = _mm_loadu_ps(r);
16 _S0 = _mm_loadu_ps(S0);
17

18 // d1 = logf(S0/K)
19 _d1 = _mm_div_ps(_S0, _K);
20 _d1 = log_ps(_d1);
21

22 // expval = exp(-r*T)
23 _expval = _mm_mul_ps(_T, _r);
24 //Negate value of r by reversing the sign bit
25 __m128 _absmask = _mm_castsi128_ps(_mm_set1_epi32(0x80000000));
26 _expval = _mm_xor_ps(_absmask, _expval);
27 _expval = exp_ps(_expval);
28

29 // d1 = logf(S0/K) + (r + 0.5*sigma*sigma)*T;
30 _tmp1 = _mm_mul_ps(_sigma, _sigma); // sigma*sigma
31 _tmp1 = _mm_mul_ps(_tmp1, _pt5); // 0.5*sigma*sigma
32 _tmp1 = _mm_add_ps(_tmp1, _r); // r + 0.5*sigma*sigma
33 _tmp1 = _mm_mul_ps(_tmp1, _T); // (r + 0.5*sigma*sigma)*T
34 _d1 = _mm_add_ps(_d1, _tmp1); // logf(S0/K) + (r + 0.5*sigma*sigma)

*T
35

36

37 // d1 /= (sigma * sqrt(T));
38 _d1 = _mm_div_ps(_d1, _sigma); // d1 /= sigma
39 _d1 = _mm_div_ps(_d1, _mm_sqrt_ps(_T)); // d1 /= (sigma * sqrt(T))
40

41 // d2 = d1 - sigma * sqrt(T);
42 _d2 = _mm_sub_ps(_d1, _mm_mul_ps(_sigma, _mm_sqrt_ps(_T)));
43

44 _Nd1 = Nf_sse(_d1);
45 _Nd2 = Nf_sse(_d2);
46

47 // c = S0 * Nd1 - K * expval * Nd2;
48 _c = _mm_sub_ps(_mm_mul_ps(_S0, _Nd1), _mm_mul_ps(_mm_mul_ps(_K, _expval), _Nd2));
49

50 // p = K * expval * (1.0 - Nd2) - S0 * (1.0 - Nd1);
51 _p = _mm_sub_ps(_mm_mul_ps(_K, _mm_mul_ps(_expval, _mm_sub_ps(_one, _Nd2))), // K *

expval * (1.0 - Nd2)
52 _mm_mul_ps(_S0, _mm_sub_ps(_one, _Nd1))); // S0 * (1.0 - Nd1)
53

54 _tmp1 = _mm_cmpeq_ps(_mm_loadu_ps((float*)cpflag), _mm_setzero_ps()); // cpflag ?
55 _answer = _mm_or_ps(_mm_and_ps(_tmp1, _p), _mm_andnot_ps(_tmp1, _c));
56 _mm_storeu_ps(answer, _answer);
57 }

110

111

Listing E.3 Standard normal distribution CDF evaluation, SSE

1 inline __m128 Nf_sse(__m128 _x)
2 {
3 __m128 _k, _n, _accum, _candidate_answer, _flag,
4 _A1 = _mm_set1_ps(0.319381530),
5 _A2 = _mm_set1_ps(-0.356563782),
6 _A3 = _mm_set1_ps(1.781477937),
7 _A4 = _mm_set1_ps(-1.821255978),
8 _A5 = _mm_set1_ps(1.330274429),
9 _INV_ROOT2PI = _mm_set1_ps(0.39894228),
10 _zero = _mm_set1_ps(0),
11 _one = _mm_set1_ps(1),
12 _pt5 = _mm_set1_ps(-.5);
13

14 //Get signs of _x
15 _flag = _mm_cmplt_ps(_x, _zero);
16

17 //Get absolute value of x by un-setting the sign bit
18 __m128 _absmask = _mm_castsi128_ps(_mm_set1_epi32(0x80000000));
19 _x = _mm_andnot_ps(_absmask, _x);
20

21 // k = 1.0 / (1.0 + 0.2316419 * x);
22 _k = _mm_div_ps(_one, _mm_add_ps(_one, _mm_mul_ps(_mm_set1_ps(0.2316419), _x)));
23

24 _accum = _mm_add_ps(_A4, _mm_mul_ps(_A5, _k));
25 _accum = _mm_add_ps(_A3, _mm_mul_ps(_accum, _k));
26 _accum = _mm_add_ps(_A2, _mm_mul_ps(_accum, _k));
27 _accum = _mm_add_ps(_A1, _mm_mul_ps(_accum, _k));
28 _accum = _mm_mul_ps(_accum, _k);
29

30 // n = expf(-0.5 * x * x);
31 // n *= INV_ROOT2PI;
32 _n = _mm_mul_ps(exp_ps(_mm_mul_ps(_mm_mul_ps(_pt5, _x), _x)), _INV_ROOT2PI);
33

34 // candidate_answer = 1.0 - n * accum;
35 _candidate_answer = _mm_sub_ps(_one, _mm_mul_ps(_n, _accum));
36

37 // return (flag ? 1.0 - candidate_answer : candidate_answer);
38 _candidate_answer = _mm_or_ps(_mm_andnot_ps(_flag, _candidate_answer),
39 _mm_and_ps(_flag, _mm_sub_ps(_one, _candidate_answer)

));
40

41 return _candidate_answer;
42 }

112APPENDIX E. SSE, AVX AND NEON ACCELLERATED BLACK-SCHOLES - SOURCE CODE

Listing E.4 Black-Scholes formula evaluation, AVX

1 inline void bsop_avx(float* answer, unsigned int* cpflag, float* S0, float* K, float* r
, float* sigma, float* T) {

2 __m256 _d1, _d2, _c, _p, _Nd1, _Nd2, _expval, _answer, _tmp1, _T, _sigma, _K, _r,
_S0;

3

4 __m256 _pt5,
5 _one,
6 _zero;
7 _pt5 = _mm256_set1_ps(.5);
8 _one = _mm256_set1_ps(1),
9 _zero = _mm256_set1_ps(0);
10

11 //Loads
12 _T = _mm256_loadu_ps(T);
13 _sigma = _mm256_loadu_ps(sigma);
14 _K = _mm256_loadu_ps(K);
15 _r = _mm256_loadu_ps(r);
16 _S0 = _mm256_loadu_ps(S0);
17

18 // d1 = logf(S0/K)
19 _d1 = _mm256_div_ps(_S0, _K);
20 _d1 = log256_ps(_d1);
21

22 // expval = exp(-r*T)
23 _expval = _mm256_mul_ps(_T, _r);
24 // Negate value of r by reversing the sign bit
25 __m256 _absmask = _mm256_castsi256_ps(_mm256_set1_epi32(0x80000000));
26 _expval = _mm256_xor_ps(_absmask, _expval);
27 _expval = exp256_ps(_expval);
28

29 // d1 = logf(S0/K) + (r + 0.5*sigma*sigma)*T;
30 _tmp1 = _mm256_mul_ps(_sigma, _sigma); // sigma*sigma
31 _tmp1 = _mm256_mul_ps(_tmp1, _pt5); // 0.5*sigma*sigma
32 _tmp1 = _mm256_add_ps(_tmp1, _r); // r + 0.5*sigma*sigma
33 _tmp1 = _mm256_mul_ps(_tmp1, _T); // (r + 0.5*sigma*sigma)*T
34 _d1 = _mm256_add_ps(_d1, _tmp1); // logf(S0/K) + (r + 0.5*sigma*

sigma)*T
35

36

37 // d1 /= (sigma * sqrt(T));
38 _d1 = _mm256_div_ps(_d1, _sigma); // d1 /= sigma
39 _d1 = _mm256_div_ps(_d1, _mm256_sqrt_ps(_T)); // d1 /= (sigma * sqrt(T))
40

41 // d2 = d1 - sigma * sqrt(T);
42 _d2 = _mm256_sub_ps(_d1, _mm256_mul_ps(_sigma, _mm256_sqrt_ps(_T)));
43

44 _Nd1 = Nf_avx(_d1);
45 _Nd2 = Nf_avx(_d2);
46

47 // c = S0 * Nd1 - K * expval * Nd2;
48 _c = _mm256_sub_ps(_mm256_mul_ps(_S0, _Nd1), _mm256_mul_ps(_mm256_mul_ps(_K,

_expval), _Nd2));
49

50 // p = K * expval * (1.0 - Nd2) - S0 * (1.0 - Nd1);
51 _p = _mm256_sub_ps(_mm256_mul_ps(_K, _mm256_mul_ps(_expval, _mm256_sub_ps(_one,

_Nd2))), // K * expval * (1.0 - Nd2)
52 _mm256_mul_ps(_S0, _mm256_sub_ps(_one, _Nd1))); // S0 * (1.0 - Nd1)
53

54 _tmp1 = _mm256_cmp_ps(_mm256_loadu_ps((float*)cpflag), _zero, 0); // cpflag ?
55 _answer = _mm256_or_ps(_mm256_and_ps(_tmp1, _p), _mm256_andnot_ps(_tmp1, _c));
56 _mm256_storeu_ps(answer, _answer);
57 }

112

113

Listing E.5 Standard normal distribution CDF evaluation, AVX

1 inline __m256 Nf_avx(__m256 _x)
2 {
3 __m256 _k, _n, _accum, _candidate_answer, _flag,
4 _A1 = _mm256_set1_ps(0.319381530),
5 _A2 = _mm256_set1_ps(-0.356563782),
6 _A3 = _mm256_set1_ps(1.781477937),
7 _A4 = _mm256_set1_ps(-1.821255978),
8 _A5 = _mm256_set1_ps(1.330274429),
9 _INV_ROOT2PI = _mm256_set1_ps(0.39894228),
10 _zero = _mm256_set1_ps(0),
11 _one = _mm256_set1_ps(1),
12 _pt5 = _mm256_set1_ps(-.5);
13

14 //Get signs of _x
15 _flag = _mm256_cmplt_ps(_x, _zero);
16

17 //Get absolute value of x by un-setting the sign bit
18 __m256 _absmask = _mm256_castsi256_ps(_mm256_set1_epi32(0x80000000));
19 _x = _mm256_andnot_ps(_absmask, _x);
20

21 // k = 1.0 / (1.0 + 0.2316419 * x);
22 _k = _mm256_div_ps(_one, _mm256_add_ps(_one, _mm256_mul_ps(_mm256_set1_ps

(0.2316419), _x)));
23

24 _accum = _mm256_add_ps(_A4, _mm256_mul_ps(_A5, _k));
25 _accum = _mm256_add_ps(_A3, _mm256_mul_ps(_accum, _k));
26 _accum = _mm256_add_ps(_A2, _mm256_mul_ps(_accum, _k));
27 _accum = _mm256_add_ps(_A1, _mm256_mul_ps(_accum, _k));
28 _accum = _mm256_mul_ps(_accum, _k);
29

30 // n = expf(-0.5 * x * x);
31 // n *= INV_ROOT2PI;
32 _n = _mm256_mul_ps(exp256_ps(_mm256_mul_ps(_mm256_mul_ps(_pt5, _x), _x)),

_INV_ROOT2PI);
33

34 // candidate_answer = 1.0 - n * accum;
35 _candidate_answer = _mm256_sub_ps(_one, _mm256_mul_ps(_n, _accum));
36

37 // return (flag ? 1.0 - candidate_answer : candidate_answer);
38 _candidate_answer = _mm256_or_ps(_mm256_andnot_ps(_flag, _candidate_answer),
39 _mm256_and_ps(_flag, _mm256_sub_ps(_one,

_candidate_answer)));
40

41 return _candidate_answer;
42 }

114APPENDIX E. SSE, AVX AND NEON ACCELLERATED BLACK-SCHOLES - SOURCE CODE

Listing E.6 Black-Scholes formula evaluation, NEON

1 void bsop_neon_intrin(float* answer, unsigned int* _cpflag, float* _S0, float* _K,
float* _r, float* _sigma, float* _T) {

2 float32x4_t T, sigma, K, r, S0, Nd1, Nd2, tmp1f, tmp2f;
3 uint32x4_t mask; int32x4_t cpflag;
4 /* bulk load all arguments */
5 T = vld1q_f32(_T);
6 sigma = vld1q_f32(_sigma);
7 K = vld1q_f32(_K);
8 r = vld1q_f32(_r);
9 S0 = vld1q_f32(_S0);
10 cpflag = vld1q_s32(_cpflag);
11

12 //find logf(S0/K). Estimate reciprocal of K
13 Nd1 = vrecpeq_f32(K);
14 Nd1 = vmulq_f32(Nd1, vrecpsq_f32(Nd1, K));
15 Nd1 = vmulq_f32(Nd1, vrecpsq_f32(Nd1, K));
16 Nd1 = vmulq_f32(Nd1, vrecpsq_f32(Nd1, K));
17 Nd1 = vmulq_f32(Nd1, vrecpsq_f32(Nd1, K));
18

19 Nd1 = vmulq_f32(Nd1, S0);
20 Nd1 = log128_neon_intrin(Nd1);
21 //Nd1 = logf(S0/K) + (r + 0.5*sigma*sigma)*T;
22 Nd1 = vaddq_f32(Nd1, vmulq_f32(vaddq_f32(r, vmulq_f32(vdupq_n_f32(0.5), vmulq_f32(

sigma, sigma))), T));
23 //sqrt(T)
24 tmp1f = vrsqrteq_f32(T);
25 tmp1f = vmulq_f32(tmp1f, vrsqrtsq_f32(vmulq_f32(tmp1f,tmp1f), T));
26 tmp1f = vmulq_f32(tmp1f, vrsqrtsq_f32(vmulq_f32(tmp1f,tmp1f), T));
27 tmp1f = vmulq_f32(tmp1f, vrsqrtsq_f32(vmulq_f32(tmp1f,tmp1f), T));
28 tmp1f = vmulq_f32(tmp1f, vrsqrtsq_f32(vmulq_f32(tmp1f,tmp1f), T));
29 //find reciprocal of 1/sqrt(T)
30 tmp2f = vrecpeq_f32(tmp1f);
31 tmp2f = vmulq_f32(tmp2f, vrecpsq_f32(tmp2f, tmp1f));
32 tmp2f = vmulq_f32(tmp2f, vrecpsq_f32(tmp2f, tmp1f));
33 tmp2f = vmulq_f32(tmp2f, vrecpsq_f32(tmp2f, tmp1f));
34 tmp2f = vmulq_f32(tmp2f, vrecpsq_f32(tmp2f, tmp1f));
35 //1/(sigma*sqrt(T))
36 Nd2 = vrecpeq_f32(sigma);
37 Nd2 = vmulq_f32(Nd2, vrecpsq_f32(Nd2, sigma));
38 Nd2 = vmulq_f32(Nd2, vrecpsq_f32(Nd2, sigma));
39 Nd2 = vmulq_f32(Nd2, vrecpsq_f32(Nd2, sigma));
40 Nd2 = vmulq_f32(Nd2, vrecpsq_f32(Nd2, sigma));
41 Nd2 = vmulq_f32(Nd2, tmp1f);
42

43 //d1/(sigma*sqrt(T)), d2=d1-sigma*sqrt(T)
44 Nd1 = vmulq_f32(Nd1, Nd2);
45 Nd2 = vsubq_f32(Nd1, vmulq_f32(sigma, tmp2f));
46

47 Nd1 = Nf_neon_intrin(Nd1);
48 Nd2 = Nf_neon_intrin(Nd2);
49

50 //expval = exp(-r*T)
51 tmp2f = vnegq_f32(vmulq_f32(T, r));
52 tmp2f = exp128_neon_intrin(tmp2f);
53

54 //use sigma as placeholder for c
55 sigma = vsubq_f32(vmulq_f32(S0, Nd1), vmulq_f32(vmulq_f32(K, tmp2f), Nd2));
56 //use T as placeholder for p
57 T = vsubq_f32(vmulq_f32(K, vmulq_f32(tmp2f, vsubq_f32(vdupq_n_f32(1.0f), Nd2))),
58 vmulq_f32(S0, vsubq_f32(vdupq_n_f32(1.0f), Nd1)));
59

60 mask = vceqq_s32(cpflag, vdupq_n_s32(0));
61 mask = vorrq_u32(vandq_u32(mask, vreinterpretq_u32_f32(T)), vbicq_u32(

vreinterpretq_u32_f32(sigma), mask));
62 vst1q_f32(answer, vreinterpretq_f32_u32(mask));
63 }

114

115

Listing E.7 Standard normal distribution CDF evaluation, NEON

1 static inline float32x4_t Nf_neon_intrin(float32x4_t x)
2 {
3 uint32x4_t flag;
4 float32x4_t k, recp_accum, n;
5

6 //get signs of x
7 flag = vcltq_f32(x, vdupq_n_f32(0));
8

9 //get absolute value
10 x = vabsq_f32(x);
11

12 // k = 1.0 / (1.0 + 0.2316419 * x);
13 k = vmulq_f32(x, vdupq_n_f32(0.2316419));
14 k = vaddq_f32(k, vdupq_n_f32(1));
15

16 //find reciprocal
17 recp_accum = vrecpeq_f32(k);
18 recp_accum = vmulq_f32(recp_accum, vrecpsq_f32(recp_accum, k));
19 recp_accum = vmulq_f32(recp_accum, vrecpsq_f32(recp_accum, k));
20 recp_accum = vmulq_f32(recp_accum, vrecpsq_f32(recp_accum, k));
21 k = vmulq_f32(recp_accum, vrecpsq_f32(recp_accum, k));
22

23 //Accumulation step
24 recp_accum = vaddq_f32(vdupq_n_f32(-1.821255978), vmulq_f32(vdupq_n_f32

(1.330274429), k));
25 recp_accum = vaddq_f32(vdupq_n_f32(1.781477937), vmulq_f32(recp_accum, k));
26 recp_accum = vaddq_f32(vdupq_n_f32(-0.356563782), vmulq_f32(recp_accum, k));
27 recp_accum = vaddq_f32(vdupq_n_f32(0.319381530), vmulq_f32(recp_accum, k));
28 recp_accum = vmulq_f32(recp_accum, k);
29

30

31 n = vmulq_f32(vmulq_f32(vdupq_n_f32(-0.5f), x), x);
32 n = vmulq_f32(exp128_neon_intrin(n), vdupq_n_f32(0.39894228f));
33

34 //candidate answer: n
35 n = vsubq_f32(vdupq_n_f32(1.0f), vmulq_f32(n, recp_accum));
36

37 n = vreinterpretq_f32_u32(vorrq_u32(vbicq_u32(vreinterpretq_u32_f32(n), flag),
38 vandq_u32(flag, vreinterpretq_u32_f32(vsubq_f32(

vdupq_n_f32(1.0f), n))))
39);
40

41 return n;
42 }

117

Appendix F

FFTW Implementation with OmpSs

This appendix contains the source code for the relevant parts of the vectorized and
OmpSs-parallelized implementation of FFTW, as well as the benchmark software. Note
that command line parsing, some error checking and verbose output was stripped from
listing F.2 due to space considerations.

Listing F.1 Relevant lines in threads/openmp.c for FFTW that were ported to OmpSs.
Changes are clearly commented with ADDED and REMOVED.

1 THREAD_ON; /* prevent debugging mode from failing under threads */
2 /* REMOVED #pragma omp parallel for */
3 for (i = 0; i < nthr; ++i)
4 {
5 /* ADDED task block */
6 #pragma omp task private(d)
7 {
8 d.max = (d.min = i * block_size) + block_size;
9 if (d.max > loopmax)
10 d.max = loopmax;
11 d.thr_num = i;
12 d.data = data;
13 proc(&d);
14 }
15 }
16 /* ADDED synchronization */
17 #pragma omp taskwait
18 THREAD_OFF; /* prevent debugging mode from failing under threads */

118 APPENDIX F. FFTW IMPLEMENTATION WITH OMPSS

Listing F.2 Relevant source code from the FFTW benchmark

1 int main(int argc, char *argv[]) {
2 int i, rc; double t0; cmd_args args;
3

4 //Parse the command line
5 parse_cmdline(argc, argv, &args);
6

7 // Create input/output arrays
8 int n[3] = {args.width, args.height, args.depth};
9 size_t N = args.width*args.height*args.depth, Nbytes = (N<8192?8192:N)*sizeof(

fftwf_complex);
10

11 // Initialize threading
12 fftwf_init_threads();
13 fftwf_plan_with_nthreads(args.threads);
14

15 // Set up FFTW
16 fftwf_complex* in = 0, * out = 0;
17 fftwf_plan p;
18

19 in = (fftwf_complex*) fftwf_malloc(Nbytes);
20 if (args.inplace) out = in;
21 else out = (fftwf_complex*) fftwf_malloc(Nbytes);
22

23 if (!in || !out) printf("Input array errors: %lld %lld\n", in, out);
24

25 char wisdom_filename[255], * schedule = getenv("NX_SCHEDULE");
26 sprintf(wisdom_filename,"wisdom_%s_%s.wiz",vectorize,schedule?schedule:"default");
27 fftwf_import_wisdom_from_filename(wisdom_filename);
28 p=fftwf_plan_dft(3,n,in,out,FFTW_FORWARD,args.measure?FFTW_MEASURE:FFTW_ESTIMATE);
29 fftwf_export_wisdom_to_filename(wisdom_filename);
30

31 fftwf_execute(p); //execute once to avoid cold starts
32

33 int r, events[] = {PAPI_L2_TCA, PAPI_L2_TCM, PAPI_L3_TCM};
34 long long values[4] = {0}, niters = 0;
35 PAPI_library_init(PAPI_VER_CURRENT);
36 PAPI_thread_init((long unsigned int (*)(void))omp_get_thread_num);
37

38 //Start cachegrind/callgrind collection
39 if (args.valgrind) CALLGRIND_TOGGLE_COLLECT;
40 PAPI_start_counters(events, 3); // Start performance counters
41 energy_counter eng;
42 initialize(&eng, NULL);
43 start_reading(&eng); //start reading energy counter
44

45 // Start timing
46 t0 = -gettime();
47 while (t0 + gettime() < 1 && !(niters >= 1 && args.valgrind)) {
48 fftwf_execute(p); niters++; }
49 t0 = (t0 + gettime()) / (double)niters;
50

51 //stop energy counter
52 stop_reading(&eng);
53 estimate_energy(&eng);
54 PAPI_stop_counters(values, 3);
55 if (args.valgrind) CALLGRIND_TOGGLE_COLLECT;
56

57 double mflops = 0.000005*N*log2(N)/t0;
58 printf("l2_refs: %lld l2_miss: %lld l3_refs: %lld l3_miss: %lld\n", values[0]/

niters, values[1]/niters, values[1]/niters, values[2]/niters);
59 printf("rt:%e mflops:%e energy:%e\n",t0,mflops,eng.package_energy/(double)niters);
60

61 fftwf_destroy_plan(p); fftwf_free(in);
62 if (!args.inplace) fftwf_free(out);
63 return 0;
64 }

118

119

Appendix G

Experiment Framework

To simplify running experiments in a consistent manner, as well as managing, extract-
ing and formatting the results in a easy way, a significant amount of work was put into
writing a framework for running experiments, and extracting the relevant results, for-
matting them into tables and plots. The framework has two parts: The experiment part,
where the experiments are run according to an experiment specification, and a presen-
tation part, where the results are extracted, formatted, and plotted, using another set of
scripts. Both parts of the framework is written in Python, and uses sqlite for storage of
results. This chapter will briefly present this framework for doing experiments.

G.1 Experiment Scripts

The main program on the experiment side is test.py. The syntax in its simplest form
is

./test.py -i <experiment specification file> -o <database file>

[-ib N] [-l <logfile>] [-v]

Here, the -i parameter specifies the experiment specification file to execute, whose
format is described in section G.1.1, -o specifies the database filename for storage of
the results. -ib controls the order of the experiments; this is also described in section
G.1.1. Lastly, -l specifies a log file for more verbose output and errors than what is
dumped to the terminal by default, and the -v switch turns on verbose mode, which
gives a much more detailed output, like for instance the raw program outputs.

G.1.1 Experiment specification files and test suites

test.py contains the code for parsing a experiment specification file, and then per-
forming the experiments specified in this file. However, every benchmark and program
has its own set of input arguments, and its own names for each of the input arguments.
Some programs also require some of the arguments to be sent in as environment vari-

120 APPENDIX G. EXPERIMENT FRAMEWORK

Keyword Description

test Specifies the name of the experiment, e.g. "blackscholes".
testset Names a subset of the current experiment, e.g. "performance_wf_schedul-

ing".
include Includes other specification files into this file.
path Specifies the path of the executable and makefile for the benchmark.
exec Specifies the name of the executable for the benchmark.
reps Specifies the number of repetitions to run the benchmark for.
env Specifies environment variables to be set. Several variables can be set by

separating each VAR=VAL by a space.
makeflags Specifies any special flags to pass to make when building the benchmark.
argv Specifies any extra command line arguments to send verbatim to the

benchmark.
cpufreq If CPU frequency control is available, specify the clock frequency in MHz.

Note that this requires a script set_cpufreq in the same directory as
test.py that takes in one argument, the CPU frequency in KHz, and sets
the CPU frequency according to this.

run Specify that the benchmark should be run with the parameters that have
been set so far.

Table G.1: Reserved keywords/variables in the experiment framework

ables. For instance, Nanos++ requires that the number of threads are given by the en-
vironment variable NX_PES. Because of this, in addition to having a experiment speci-
fication file, test.py contains classes which in this script is called "test suites", which de-
scribe how the values given by the experiment specification file should be interpreted,
and how the results should be extracted. Which test suite that should be used for a
given experiment specification file is determined by looking at the executable name in
the specification. Section G.1.3 gives an overview of the required member functions for
a test suite, and how to integrate new test suites into the script.

The experiment specification files specify input parameters, command line argu-
ments, environment variables, paths, and so on. The file format is a simple line-by-line
key-value format, where each line is either a comment (if the line starts with a #), an
empty line (no characters other than newline or whitespace), or a line starting with a
key (a "variable" to be set), whose value will be set to whatever comes after this key.
The semantics of a variable, or if a variable is even used, is up to the test suite for the
program being tested.

Some variables are "reserved", in the sense that they imply special meaning to
the framework itself. Those variables or keywords are given in table G.1. Any other
variables is parsed and put in a dictionary in test.py, and is not used unless the test
suite uses it. An example experiment specification file is given in listing G.1.1. In this
example, there is two sets of input parameters, one with width=1024 and one with
width=2048. The benchmark is run with each of these input parameters ten times.

The default behavior of the experiment script, test.py, is to run reps times
with the first set of input parameters, then reps times with the second set of input

120

G.1. EXPERIMENT SCRIPTS 121

Listing G.1 Example experiment specification file

1 include include/ompss_flags.inc
2

3 test bsop_debug
4 path ./bsop
5 exec bsop.x
6

7 reps 10
8

9 env NX_SCHEDULE=wf
10

11 # Performance testing, with different sizes
12 testset perf_novec
13 cpufreq 3400
14 vectorize none
15 nthreads 8
16 width 1024
17 run
18 width 2048
19 run

parameters, and so on. Due to disturbances in the test bench from e.g. system processes
or other users, it may be desirable to spread out the experiments so that if there is a
heavy system process starts interfering for a certain amount of time, it won’t pollute all
the results for just one single input, which may lead to wrong conclusions, but instead
pollute only a few of the results for each input. To determine the execution order, the
command line argument -ib can be used. Setting -ib to 1 results in a breadth-first
execution, while not setting it is equivalent to setting it to infinity, which is depth-first
execution, which is the default.

G.1.2 Database layout

For storage, sqlite is used, with the following database schema:

CREATE TABLE result_set (test_name VARCHAR(200), testset

VARCHAR(200), <input fields>, <result fields>);

CREATE TABLE stats (test_name VARCHAR(200), testset

VARCHAR(200), <input fields>, <stats fields>);

The input fields are given in test.py, in the input_values field of the DB class, as
an array of (<field name>, <type>) tuples. The supported types are the Python types
int, str, float and datetime. These are simply the input parameters that should be stored
with the results. Some typical input parameters that often should have a field in the
database is the problem size and number of threads.

The result fields is given by the result_values array in the DB class which, like
input_values, is an array of (<field name>, <type>) tuples. These are the results that
should be stored to the database. Typically, all results should be stored, however, ex-
actly what values "all results" encompasses varies. For instance, a researcher measuring
energy consumption in some application may want a "energy consumed" field, while
someone purely interested in performance benchmarks have no use for such results.

The stats fields are derived from the result fields, in the following way. For each

122 APPENDIX G. EXPERIMENT FRAMEWORK

result field, append _median, _mean, _stddev, _range_min and _range_max.These
fields contain the statistical data for the results.

In addition to the tables, there exists a view called "results" on top of the tables
result_set and stats, that may contain derived values like speedup, as well as all the
statistics for each of the tests. This view is unfortunately hard coded and may have to
be modified manually, or removed.

G.1.3 Adding support for more benchmarks

Adding support for another application or benchmark in test.py is fairly simple. First,
determine if the benchmark has any input parameters or result fields that should be
stored in the result set that do not have any database field already, and if so, add these
fields as described in section G.1.2. Then, create another test suite class. The simplest
is copying one of the classes that are there already. A test suite class must have the
member functions given in table G.2.

The function that actually executes the benchmark and reads out the results is
test_common. test_common takes 9 arguments. The first two is the Test instance and
Input instance which represents the global test parameters like the test name and input
parameters. The third should be a dictionary of result keys (same as the result database
field names) to ResultValue instances, which has the constructor ResultValue(<type
>, <regex>). The regex is the regular expression matching the particular result value
of interest from the output. The type is the same as the type in the database field. For
instance, if the running time of an application has the following format: "The running
time was 5.38s", a ResultValue for this output could be constructed as ResultValue(

float, "The running time was S+s"). The fourth and fifth arguments are the ar-
gument list and environment variable list constructed with suite.arglist and suite

.envlist. The sixth and seventh are log and error files, and should just be passed on.
The eight, iters_before_switch, is the -ib parameter. The ninth, niters_regex, is a
regex for the number of iterations that a benchmark went through before exiting. This
is necessary to get the correct means and standard deviations when a benchmark runs
multiple times on its own, independently from the reps variable.

G.2 Results Extraction and Presentation

On the presentation side, the main script is maketable.py, which parses an output
specification, which is a file containing the filenames and queries for each file or table
to be output, and outputs tables and data files based on this specification. These files
can then be handled further, by e.g. parsing them in matplotlib, or with Gnuplot, or
inserting them as tables in Latex. The syntax of maketable.py is

./test.py -i <output specification file>

The output specification file has a format similar to the experiment specification
file in section G.1.1. Lines starting with # is comments, blank lines are ignored, and

122

G.2. RESULTS EXTRACTION AND PRESENTATION 123

Function Return value and remarks

must_make(inext,

iprev, test)

Returns True if the benchmark must be rebuilt, based on the
previous input parameters iprev, and the next input pa-
rameters inext, and False otherwise. A good rule is often
to return True if iprev is None, i.e. the next input parame-
ters to be processed is the first.

make(test, input

, logfiles,

errorfiles)

Returns nothing. Builds any extra arguments to Make
before building, based on the input parameters. For in-
stance, in Black-Scholes, any vectorization must be spec-
ified as a flag to make. Finally this function should call
the global function make. In its simplest form, if no ex-
tra arguments must be constructed, suite.make can sim-
ply call make(test.path, test.makeflags, logfiles,

errorfiles).
arglist(test,

input, executable)

This function should return the argument list for the
program. Note that the program path and executable
name is part of this argument list. For a simple benchmark
that only has one input argument, "width", could have a
rule like this: return os.path.join(test.path, test

.executable) + " --arraysize " + str(int(input.

input_params.get("width", 1)))

envlist(test,

input)

This function should return a dictionary containing envi-
ronment variable names as keys, and their value as the
value.

test(test, input

, executable

, logfiles,

errorfiles,

iters_before_switch

)

This function should return the value of a call to
test_common, whose arguments is described below.

Table G.2: Required member functions of test suites

the rest have a key-value format. The file should start with set db <dbfile>, where
<dbfile> is the results database from the experiments. Then for each output table or
datafile, there should be a block like the following one, where the optional lines are
enclosed in [and].

file <filename>

[separator <field separator string>]

[newline <newline string>]

[direction <direction>]

query <SQL query string 1>

[query <SQL query string 2>]

...

[query <SQL query string N>]

124 APPENDIX G. EXPERIMENT FRAMEWORK

The filename is the output filename. For instance, if we were to produce a latex
table from the results, we might name it promising_results.tex. The separator
field specifies what string that should separate the fields in the output file, if any. For
a latex table, this is an ampersand, "&". The newline field specifies a string to be ap-
pended before a newline. For latex tables, this should be a double backslash, "

". The direction field specifies if additional query results should be appended as
rows or columns. "down" means appending additional results as extra rows, while
"right" makes additional queries append the results as columns. Finally, the query

fields can be arbitrarily many, and specifies the SQL queries to perform against the re-
sults database.

A simple example which produces a latex table containing the running time, rt, of
an application for different problem sizes, N, is shown in listing G.2.

Listing G.2 Example output specification file

1 set db results.db
2

3 file data/performance.tex
4 separator &
5 newline \\
6 query select N, rt from results where test_name=’mybenchmark’ and testset=’

my_new_scheduling_alg’

124

125

Appendix H

Paper

Case Studies of Multi-core Energy Efficiency in
Task Based Programs

Hallgeir Lien1, Lasse Natvig1, Abdullah Al Hasib1, and Jan Christian Meyer2

1 Dept. of Computer and Information Science (IDI), NTNU,
Trondheim, NO-7491, Norway. E-mail: Lasse@computer.org
2 High Performance Computing Section, IT Dept., NTNU

Abstract. In this paper, we present three performance and energy case
studies of benchmark applications in the OmpSs environment for task
based programming. Different parallel and vectorized implementations
are evaluated on an IntelR© CoreTMi7-2600 quad-core processor. Using
FLOPS/W derived from chip MSR registers, we find AVX code to be
clearly most energy efficient in general. The peak on-chip GFLOPS/W
rates are: Black-Scholes (BS) 0.89, FFTW 1.38 and Matrix Multiply
(MM) 1.97. Experiments cover variable degrees of thread parallelism and
different OmpSs task pool scheduling policies. We find that maximum
energy efficiency for small and medium sized problems is obtained by
limiting the number of parallel threads. Comparison of AVX variants
with non-vectorized code shows ≈ 6 − 7× (BS) and ≈ 3 − 5× (FFTW)
improvements in on-chip energy efficiency, depending on the problem size
and degree of multithreading.

Keywords: performance evaluation, energy efficiency, task based pro-
gramming.

1 Introduction

Saving energy is now a top priority in most computing systems. Sensor networks
which report over long time frames are installed in environments where it is
expensive or impossible to replace batteries. Mobile computing devices have
severely restricted operation time without recharging. Computers produce less
heat, less noise, and are cheaper to operate if they consume less energy.

Recently, we have seen a convergence between embedded systems and High
Performance Computing. Both these market segments now have energy efficiency
as a major design goal. The convergence is exemplified in the Mont Blanc project,
which is part of the European Exascale Software Initiative (EESI). Mont Blanc
aims at developing a European scalable and power efficient HPC platform based
on low-power embedded technology [1].

The Green500 list ranks the world’s most energy efficient supercomputers [2].
The ranking is based on the FLOPS/W metric for LINPACK and the top entry
in the November 2011 list achieved 2.03 GFLOPS/W. Motivated by Mont Blanc
targeting the Green500 list, we selected FLOPS/W as a metric for our studies.

II

Task Based Programming (TBP) has recently gained increasing interest. In
some TBP systems the programmer must take care of all data dependencies
between the tasks by explicit synchronizations. In newer, dependency aware
TBP systems [3] the cumbersome synchronization is transferred to the run-
time system. OmpSs uses this automatic run-time parallelization approach, and
provides mechanisms for executing tasks on accelerators such as GPUs [4], thus
simplifying the programming of heterogeneous and hybrid architectures. OmpSs
will be used in the Mont Blanc project [5]. We have chosen the Black-Scholes
benchmark and Matrix Multiply already implemented with OmpSs for our case
studies. In addition, we adapted an OpenMP benchmark of FFTW for OmpSs.
We implemented SSE and AVX vectorization for Black-Scholes and compiled
FFTW without vectorization, with SSE and with AVX, while Matrix Multiply
was already vectorized with AVX through its use of ATLAS [6].

This paper presents energy efficiency results for three benchmarks, compar-
ing the effects of applying vectorization and thread parallelism. Problem sizes
are restricted to minimize interactions with memory, isolating on-chip energy
consumption. It is an initial effort toward understanding overall system power
by examining incremental sets of subsystems.

Our contributions are on-chip energy efficiency results for Black-Scholes,
FFTW and matrix multiplication on the recent Intel Sandy Bridge architecture,
and discussion of the relative benefits of parallelization and vectorization.

The paper is organized as follows: Section 2 describes the computer used in
the experiments, motivates and defines the selection of energy efficiency metric,
and introduces the selected benchmarks. Section 3 explains how we performed
the energy measurements, and organized the experiments to achieve stable and
reproducible results. We outline the vectorization and parallelizations, followed
by a discussion of the main results. Section 4 describes related work, before the
paper is concluded in Section 5.

2 Background

2.1 Execution Platform, SSE and AVX

All experiments were executed on a four core desktop computer that can execute
8 threads using Intel HyperthreadingTM. Its main architecture and specifications
are shown in Figure 1.

All cores were clocked at their maximum rate of 3.4 GHz. Cache sizes, line
sizes and associativity are described in Table 1. Latencies are taken from [7].

The Intel Sandy Bridge processors allow vectorization using SSE or AVX.
AVX registers extend the 128 bit SSE registers with an additional 128 bits,
and can theoretically double the throughput [8]. SSE and AVX are programmed
using intrinsics, inline assembly, or automatic vectorization by the compiler.

2.2 Performance and Energy Metrics

There is a trade-off between the partly conflicting goals of high performance and
low energy consumption. Comparing systems based on energy consumption alone

III

Model # 42
Stepping 7
Clock frequency 1.6 - 3.4GHz
Physical cores 4
Logical cores 8
Main memory 16GB

Fig. 1. IntelR© CoreTMi7-2600 Sandy Bridge multi-core processor architecture (left)
and specification (right).

Cache Size Sharing Ways of Line size Latency
associativity (cycles)

Level 1 Instruction 32KB Private 8 64B 4
Level 1 Data 32KB Private 8 64B 4
Level 2 256KB Private 8 64B 12
Level 3 8MB Shared 16 64B 26-31

Table 1. Cache information for Intel Core i7-2600, 3.4GHz

would motivate the use of very slow processors with low frequency, since energy
is the product of power and execution time. The Energy-Delay Product (EDP)
places greater emphasis on performance, and corresponds to the reciprocal of
performance pr. energy unit.

Different metrics are appropriate to different cases when studying energy
efficiency. Rivoire et al. [9] give a readable introduction to the pros and cons
of various energy efficiency metrics. PerformanceN/Watt is among the most
general, as it allows adjusting the balance between high performance and low
energy consumption. N = 0 implies a focus on the power consumption alone,
while N = 2 corresponds to EDP.

Any FLOPS performance metric implies a definition of how many floating
point operations are required to handle a given problem size. One method would
be to measure the number of operations per experiment, using performance
counters. This would also count unnecessary operations, and be poorly suited
to comparing performance between implementations. In this work, FLOPS rate
was measured by counting or estimating the number of useful floating point
operations and dividing by execution time. Integer operations such as bit-wise

IV

logical operations and shifts were ignored. Further details on the operation counts
can be found in [10].

Energy measurements were obtained from the energy consumption fields of
the non-architectural Machine State Registers (MSRs) made available by the
Running Average Power Limit (RAPL) interface [11]. Because these values only
reflect chip level energy consumption, we observe the L3 miss rate to find the
range of problem sizes where the application is being executed on-chip. As long
as the L3 miss rate is close to zero, our on-chip energy measurements give a fair
comparison of energy efficiency for the different implementations.

2.3 Selection of Benchmarks

Our choice of applications is motivated by the Mont Blanc project, leading to
use of OmpSs, and benchmark selection from potential target applications [5].

Black-Scholes is part of the PARSEC Benchmark Suite for shared memory
computers [12]. It calculates prices for a portfolio of European stock options by
evaluating the Black-Scholes formula for each element of a data set. A financial
market is modeled by repeating this computation over time.

FFTW (Fastest Fourier Transform in the West) is a widely used FFT library.
The FFTW library achieves high performance by automatically adapting its
algorithm for the machine it is run on. It first creates a plan of execution for the
given problem, and then executes it. A plan is created by heuristically tailoring
execution to the current system (e.g. querying cache sizes), and several different
plans are tested to find the fastest candidate. Measurement can be omitted to
save plan creation time, when less efficient execution is acceptable [13].

The third application studied is Matrix Multiplication implemented with
OmpSs. It creates tasks from multiplication tiles, calling BLAS gemm at the
tile level. We use the ATLAS library for this, because of its AVX support.

3 Experiments and Results

3.1 Method

We use the RAPL MSR interface to read out energy used by the processor chip.
The bits 12:8 of the MSR RAPL POWER UNIT register describe the granularity of the
energy values. The default value is 2−16J ≈ 15.3µJ . Consumed energy is read
from the bits 31:0 of the MSR PKG ENERGY STATUS register, which has a wrap-
around time of about 60 seconds on high processor load [11]. Our experiments
complete in a few seconds, remaining safely within this limit.

Data access was kept within the multi-core chip by limiting problem sizes to
fit in the last level cache (LLC). As the RAPL registers do not reflect the cost of
off-chip memory, its magnitude is not visible in our results, making it necessary
to restrict its influence.

LLC miss rates were recorded using performance monitoring counters, in
order to validate that predicted limits for on-chip problem sizes are correct.

V

The changes in application behavior observed at the LLC limit are visible in our
performance results. Every experiment was run 10 times and we plot the median
value for each problem size. The first sample points are discarded, in order to
remove cache cold start effects.

The results are reproducible and stable, with a relative standard deviation
less than 3% for the relevant problem sizes. The standard deviations of runs are
far smaller than the margins separating different implementations.

All experiments were run under openSuse 11.4 (x86 64) running Linux kernel
2.6.37.6, and all OmpSs applications were compiled using sscc from the OmpSs
package. As sscc translates at source level, gcc 4.7.0 generated the native code.
Nanos++ runtime version 0.6a was used for all experiments.

3.2 Black-Scholes

Vectorization of Black-Scholes made it necessary to implement natural logarithm
and exponential functions. We adapted code from the Cephes Mathematical
Library [14]; further details can be found in H. Lien’s Master thesis [10].

Black-Scholes uses 6 input- and one output-array, each containing N 32-bit
floating point numbers, giving a memory footprint of 28N bytes, where N is
the problem size. The largest problem that can fit the LLC is N = 218, as
218 · 28B = 7MB. The LLC miss rate is below 0.1% for N up to and including
215, 0.56% for N = 216 were the memory footprint is 1.75 MB, and it increases
dramatically for N = 217 and larger problems. Results are shown in Figure 2
and Figure 3.

Task sizes S for Black-Scholes were chosen so that task scheduling overhead
has little effect on performance. S = 2048 was used for large problems, and
S = max(N/8, 16) for small problems. The work-first scheduling algorithm in
OmpSs was used since it gave high and stable performance. Relative standard
deviation (RSD) per benchmark was typically less than 3% for N > 25.

3.3 FFTW

FFTW already supports OpenMP, which allowed us to create a straightforward
OmpSs port. This was done by replacing omp parallel for constructs with omp

task loop bodies, and their associated implicit barriers with omp taskwait.
A single precision out-of-place transform was performed, which requires two

arrays of N complex numbers each. This gives a memory footprint of 16N bytes.
Thus, the largest problem that possibly could fit in the LLC is N = 219, as
219 · 16B = 8MB. We obtained LLC miss rates less than 0.1 % for problem sizes
up to and including N = 217, and rapid increases above this limit. RSD was less
than 3 % for N > 27. Results are shown in Figure 4 and Figure 5.

3.4 Matrix multiplication

Our initial experiments with the OmpSs Matrix Multiply use ATLAS with
AVX. They give a peak performance at 149.7 GFLOPS running 4 threads on a

VI

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0

10

20

30

40

50
Pe

rfo
rm

an
ce

 (G
FL

OP
S)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

Fig. 2. Performance vs. problem size for Black-Scholes. The vertical line marks the
8MB point, i.e. the problem size where application data require the entire LLC.

8192x8192 matrix. The peak on-chip energy efficiency is 1.97 GFLOPS/W for
the same configuration, and we found the LLC misses per floating point op-
eration to be less or equal to 3.8 · 10−5 for all problem sizes. The results are
summarized in Figure 6 and Figure 7.

3.5 Discussion

We compare observations of energy efficiency improvement to corresponding
parallel speedup, in order to evaluate the benefit of adding parallelism.

As seen in Figures 2 and 3, Black-Scholes scales favorably. 4-thread runs
become advantageous at problem sizes N = 212 and N = 213, and 8-thread runs
show energy benefits upwards of N = 214. It is also visible that Black-Scholes
retains energy efficiency for out-of-cache problem sizes, albeit with a peak at
N = 216. Speedup with hyperthreading (8 threads) is distinctly sub-linear, but
there is a clear improvement which admits evaluation of the return on energy
investment.

Figures 4 and 5 show that FFTW reaps no benefit from hyperthreading,
and clearly becomes bandwidth bound for problem sizes beyond available cache
space. This limit is characteristic of the kernel, and also witnessed by the results

VII

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
En

er
gy

 e
ffi

ci
en

cy
 (G

FL
OP

S/
W

at
t)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

Fig. 3. Energy efficiency vs. problem size for Black-Scholes. The vertical line marks
the 8MB point, i.e. the problem size where application data require the entire LLC.

of Frigo and Johnson [13]. For problem sizes up to N = 214, energy efficiency is
higher for vectorized single-thread than for parallel execution, and AVX provides
further benefits over SSE. It is interesting to note that the intersection coincides
with L2 cache size. For the last-level cache problem sizes of 214 through 218, 4-
thread execution provides higher energy efficiency, in proportion to the speedup.

For matrix multiplication, Figures 6 and 7 show that even though eight
threads perform significantly better than one, energy efficiency is lower for all
problem sizes due to a higher energy consumption rate. As the ALU and L1/L2
caches are shared between hyperthreads on a single core, the performance us-
ing eight threads is lower than with four, because tiled, dense matrix-matrix
multiplication is computation bound.

4 Related Work

Duran et al. [4] evaluate OmpSs implementations of Black-Scholes and Matrix
Multiply, but focus on performance only. Comparing with their 4-core result, we
get a performance improvement in excess of factor 10. We attribute the difference
to the higher CPU clock frequency of our test system, and AVX vectorization.

VIII

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0

10

20

30

40

50

60

70
Pe

rfo
rm

an
ce

 (G
FL

OP
S)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

Fig. 4. Performance vs. problem size for FFTW. The 8MB point is marked by the
vertical line.

Ge et al. [15] show how the PowerPack framework can be used to study in
depth the energy efficiency of parallel applications on clusters with multi-core
nodes. The framework is measurement based, and can be used to identify the
energy consumption of all major system components.

Li and Martinez [16] develop and use an analytical model of the power-
performance implications of degree of parallelism and voltage/frequency scaling.
They confirm their analytical results by detailed simulation.

Molka et al. [17] discuss weaknesses of the Green500 list with respect to
ranking HPC system energy efficiency. They introduce their own benchmark
using a parallel workload generator to stress main components in a HPC system.

Anzt et al. [18] present an energy performance analysis of different iterative
solver implementations on a hybrid CPU-GPU system. The study is based on
empirical measurements, and energy is saved by using DVFS (Dynamic Voltage
and Frequency Scaling) to lower the CPU clock frequency while computations
are offloaded to the GPU.

IX

21 23 25 27 29 211 213 215 217 219 221 223 225

Problem size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
En

er
gy

 e
ffi

ci
en

cy
 (G

FL
OP

S/
W

at
t)

1 thread, no vec.
1 thread, SSE
1 thread, AVX
4 threads, no vec.
4 threads, SSE
4 threads, AVX
8 threads, no vec.
8 threads, SSE
8 threads, AVX

Fig. 5. Energy efficiency vs. problem size for FFTW. The 8MB point is marked by the
vertical line.

5 Conclusions and Future Work

Using chip energy performance counters to instrument three floating-point inten-
sive benchmarks, our experiments show that vectorization provides a significant
improvement in on-chip energy efficiency, and that energy efficiency varies with
problem size in common application kernels. In our results we have seen that
vectorization improves both performance and energy efficiency, while the perfor-
mance improvement from thread parallelism does not necessarily imply a better
energy efficiency.

Variation of energy efficiency with task size suggests that energy-aware task
scheduling may adapt task sizes for energy efficient execution, which provides
an interesting direction for future research. We also plan to extend the work
by studying the impact of varying CPU clock frequencies, OmpSs scheduling
policies, and using Turbo Boost Technology. We will apply the Intel Energy
Checker SDK and Yokogawa WT210 Power analyzer, to refine energy profiles by
including off-chip bandwidth and memory system parameters. The experiments
will be extended to a SGI Altix ICE X supercomputer, featuring 2 × 8 Sandy
Bridge multi-core processors.

X

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0

20

40

60

80

100

120

140

160

Pe
rfo

rm
an

ce
 (G

FL
OP

S)
1 thread
4 threads
8 threads

Fig. 6. Performance in MFLOPS of matrix multiplication for different problem sizes.
The 8MB point is marked by the vertical line.

Acknowledgments. The authors gratefully acknowledge the support of the
PRACE 2IP project, the NOTUR project, the HiPEAC Network of Excellence,
and the help from OmpSs researchers at UPC in Barcelona.

References

1. “Mont Blanc project website.” http://www.montblanc-project.eu/.
2. “The Green 500 - Ranking the World’s Most Energy Efficient Supercomputers.”

http://www.green500.org.
3. J. Perez, R. Badia, and J. Labarta, “A dependency-aware task-based programming

environment for multi-core architectures,” in Cluster Computing, 2008 IEEE Int’l
Conf. on, pp. 142 –151, oct 2008.

4. A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and
J. Planas, “OmpSs: A Proposal for Programming Heterogeneous Multi-core Ar-
chitetcures,” Parallel Processing Letters, vol. 21, pp. 173–193, Mar. 2011.

5. A. Ramirez, “European scalable and power efficient HPC platform based on low-
power embedded technology.” http://www.eesi-project.eu/, Oct 2011. Presenta-
tion at the EESI conference.

6. R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical optimizations
of software and the ATLAS project,” Parallel Computing, vol. 27, no. 12, pp. 3–35,
2001.

7. Intel, Intel R©64 and IA-32 Architectures Optimization Reference Manual, jun 2011.
8. Intel, Avoiding AVX-SSE Transition Penalties, nov 2011.
9. S. Rivoire, M. Shah, P. Ranganatban, C. Kozyrakis, and J. Meza, “Models and

metrics to enable energy-efficiency optimizations,” Computer, vol. 40, pp. 39 –48,
Dec. 2007.

XI

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.5

1.0

1.5

2.0

En
er

gy
 e

ffi
ci

en
cy

 (G
FL

OP
S/

W
at

t)
1 thread
4 threads
8 threads

Fig. 7. Energy efficiency in MFLOPS/watt of matrix multiplication for different prob-
lem sizes. The 8MB point is marked by the vertical line.

10. H. Lien, “Case Studies in Multi-core Energy Efficiency of Task Based Programs
(preliminary title),” Master’s thesis, Norwegian University of Science and Technol-
ogoy, Trondheim, Norway, 2012. Work in progress, to be submitted July 2012.

11. Intel, Intel R©64 and IA-32 Architecture Software Development Manual, Dec 2011.
12. C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite:

characterization and architectural implications,” in Proc. of the 17th int’l conf. on
Parallel Architectures and Compilation Techniques, PACT ’08, pp. 72–81, 2008.

13. M. Frigo and S. Johnson, “The Design and Implementation of FFTW3,” Proceed-
ings of the IEEE, vol. 93, pp. 216 –231, feb. 2005.

14. S. L. Moshier, “Cephes Math Library.” http://www.netlib.org/cephes.
15. R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron, “Powerpack: Energy

profiling and analysis of high-performance systems and applications,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 21, pp. 658 –671, may 2010.

16. J. Li and J. F. Mart́ınez, “Power-performance considerations of parallel computing
on chip multiprocessors,” ACM Transactions on Architecture and Code Optimiza-
tion, vol. 2, pp. 397–422, Dec. 2005.

17. D. Molka, D. Hackenberg, R. Schöne, T. Minartz, and W. Nagel, “Flexible workload
generation for HPC cluster efficiency benchmarking,” Computer Science - Research
and Development, pp. 1–9.

18. H. Anzt, M. Castillo, J. Fernández, V. Heuveline, F. Igual, R. Mayo, and
E. Quintana-Ort́ı, “Optimization of power consumption in the iterative solution of
sparse linear systems on graphics processors,” Computer Science - Research and
Development, pp. 1–9.

REFERENCES 137

References

[1] A. Ramirez, “European scalable and power efficient HPC platform
based on low-power embedded technology.” www.eesi-project.eu/media/
BarcelonaConference/Day2/13-Mont-Blanc_Overview.pdf, oct 2011. [cited at p. xv, 6,

7, 10, 12]

[2] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, Hill, K., and Others, “Exascale computing study: Tech-
nology challenges in achieving exascale systems,” tech. rep., University of Notre
Dame, CSE Dept., 2008. [cited at p. 1, 5, 6]

[3] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo, “Intel AVX: New Frontiers
in Performance Improvements and Energy Efficiency,” white paper, Intel, March
2008. [cited at p. 2, 12]

[4] “Top500 Supercomputer Sites.” http://www.top500.org. [cited at p. 5, 6]

[5] “EESI Website.” http://www.eesi-project.eu. [cited at p. 5]

[6] C. Carvalho, “The Gap between Processor and Memory Speeds,” 2002. [cited at p. 5]

[7] F. Baude, D. Caromel, N. Furmento, and D. Sagnol, “Optimizing metacomput-
ing with communication-computation overlap,” in Parallel Computing Technologies
(V. Malyshkin, ed.), vol. 2127 of Lecture Notes in Computer Science, pp. 190–204,
Springer Berlin / Heidelberg, 2001. [cited at p. 5]

[8] A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany, “Transformations to parallel codes
for communication-computation overlap,” in Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, SC ’05, (Washington, DC, USA), pp. 58–, IEEE Com-
puter Society, 2005. [cited at p. 5]

[9] S. B. Baden and S. J. Fink, “Communication overlap in multi-tier parallel al-
gorithms,” in Proceedings of the 1998 ACM/IEEE conference on Supercomputing
(CDROM), Supercomputing ’98, (Washington, DC, USA), pp. 1–20, IEEE Computer
Society, 1998. [cited at p. 5]

[10] P. Cicotti and S. Baden, “Short paper: Asynchronous programming with tarragon,”
in High Performance Distributed Computing, 2006 15th IEEE International Symposium
on, pp. 375 –376, 0-0 2006. [cited at p. 5]

www.eesi-project.eu/media/BarcelonaConference/Day2/13-Mont-Blanc_Overview.pdf
www.eesi-project.eu/media/BarcelonaConference/Day2/13-Mont-Blanc_Overview.pdf
http://www.top500.org
http://www.eesi-project.eu

138 REFERENCES

[11] “The Green 500 - Ranking the World’s Most Energy Efficient Supercomputers.”
http://www.green500.org. [cited at p. 6, 15, 18]

[12] W. Saunders, “Rethinking Supercomputer Performance and Efficiency for Ex-
ascale.” http://communities.intel.com/community/openportit/server/blog/
2011/10/20/rethinking-supercomputer-performance-and-efficiency-for-exascale.
[cited at p. 6]

[13] S. Huang, S. Xiao, and W. Feng, “On the energy efficiency of graphics processing
units for scientific computing,” in Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pp. 1 –8, may 2009. [cited at p. 6]

[14] AnandTech, “Samsung’s Galaxy S II Preliminary Performance: Mali-
400MP Benchmarked.” http://www.anandtech.com/show/4177/
samsungs-galaxy-s-ii-preliminary-performance-mali400-benchmarked. [cited at p. 7]

[15] “Mont Blanc project website.” http://www.montblanc-project.eu/. [cited at p. 7]

[16] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical optimizations
of software and the ATLAS project,” Parallel Computing, vol. 27, no. 1–2, pp. 3 – 35,
2001. [cited at p. 7, 23]

[17] M. Frigo and S. G. Johnson, “The Fastest Fourier Transform in the West,” in the Pro-
ceedings of the 1998 International Conference on Acoustics, Speech, and Signal Processing,
ICASSP ’98, 1997. [cited at p. 7, 18, 46]

[18] HDF Group, “HDF Web site.” http://www.hdfgroup.org/. [cited at p. 7]

[19] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Ham-
merling, J. Demmel, C. Bischof, and D. Sorensen, “Lapack: a portable linear algebra
library for high-performance computers,” in Proceedings of the 1990 ACM/IEEE con-
ference on Supercomputing, Supercomputing ’90, (Los Alamitos, CA, USA), pp. 2–11,
IEEE Computer Society Press, 1990. [cited at p. 7]

[20] W. BOSMA, J. CANNON, and C. PLAYOUST, “The magma algebra system i: The
user language,” Journal of Symbolic Computation, vol. 24, no. 3–4, pp. 235 – 265, 1997.
[cited at p. 7]

[21] L. Hochstein, J. Carver, F. Shull, S. Asgari, and V. Basili, “Parallel Programmer
Productivity: A Case Study of Novice Parallel Programmers,” in Supercomputing,
2005. Proceedings of the ACM/IEEE SC 2005 Conference, p. 35, nov. 2005. [cited at p. 7]

[22] ScaleMP, “vsmp architecture.” http://www.scalemp.com/architecture. [cited at p. 7]

[23] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP Programming and Tun-
ing for GPUs,” in Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’10, (Washington, DC,
USA), pp. 1–11, IEEE Computer Society, 2010. [cited at p. 8]

138

http://www.green500.org
http://communities.intel.com/community/openportit/server/blog/2011/10/20/rethinking-supercomputer-performance-and-efficiency-for-exascale
http://communities.intel.com/community/openportit/server/blog/2011/10/20/rethinking-supercomputer-performance-and-efficiency-for-exascale
http://www.anandtech.com/show/4177/samsungs-galaxy-s-ii-preliminary-performance-mali400-benchmarked
http://www.anandtech.com/show/4177/samsungs-galaxy-s-ii-preliminary-performance-mali400-benchmarked
http://www.hdfgroup.org/
http://www.scalemp.com/architecture

REFERENCES 139

[24] D. Unat, X. Cai, and S. B. Baden, “Mint: realizing CUDA performance in 3D stencil
methods with annotated C,” in Proceedings of the international conference on Super-
computing, ICS ’11, (New York, NY, USA), pp. 214–224, ACM, 2011. [cited at p. 8]

[25] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and
J. Planas, “OmpSs: A PROPOSAL FOR PROGRAMMING HETEROGENEOUS
MULTI-CORE ARCHITECTURES,” Parallel Processing Letters, vol. 21, pp. 173–193,
2011-03-01 2011. [cited at p. 8, 10, 17]

[26] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M. Badia, E. Ayguadé,
and J. Labarta, “Productive Cluster Programming with OmpSs,” in Euro-Par 2011
Parallel Processing - 17th International Conference, Euro-Par 2011, Bordeaux, France,
August 29 - September 2, 2011, Proceedings, Part I (E. Jeannot, R. Namyst, and J. Ro-
man, eds.), vol. 6852 of Lecture Notes in Computer Science, pp. 555–566, Springer,
2011. [cited at p. 10]

[27] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of openmp task scheduling
strategies,” in OpenMP in a New Era of Parallelism (R. Eigenmann and B. de Supin-
ski, eds.), vol. 5004 of Lecture Notes in Computer Science, pp. 100–110, Springer Berlin
/ Heidelberg, 2008. [cited at p. 11, 17]

[28] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The
landscape of parallel computing research: A view from berkeley,” Tech. Rep.
UCB/EECS-2006-183, EECS Department, University of California, Berkeley, Dec
2006. [cited at p. 11]

[29] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the obvi-
ous,” SIGARCH Comput. Archit. News, vol. 23, pp. 20–24, mar 1995. [cited at p. 11]

[30] H. Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software,” Dr. Dobb’s Journal, vol. 30, mar 2005. [cited at p. 11, 49]

[31] C. Meenderinck and B. Juurlink, “Euro-par 2008 workshops - parallel processing,”
in Euro-Par 2008 Workshops - Parallel Processing (E. César, M. Alexander, A. Streit,
J. L. Träff, C. Cérin, A. Knüpfer, D. Kranzlmüller, and S. Jha, eds.), ch. (When) Will
CMPs Hit the Power Wall?, pp. 184–193, Berlin, Heidelberg: Springer-Verlag, 2009.
[cited at p. 11, 49]

[32] Intel, Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor, mar 2004.
[cited at p. 11, 49]

[33] Nvidia, Fermi Compute Architecture Whitepaper. [cited at p. 12]

[34] ARM, “Mali-T658.” http://www.arm.com/products/multimedia/
mali-graphics-hardware/mali-t658.php. [cited at p. 12]

[35] Intel, Extending the World’s Most Popular Processor Architecture, 2006. [cited at p. 12]

[36] Intel, Avoiding AVX-SSE Transition Penalties, nov 2011. [cited at p. 13, 14]

http://www.arm.com/products/multimedia/mali-graphics-hardware/mali-t658.php
http://www.arm.com/products/multimedia/mali-graphics-hardware/mali-t658.php

140 REFERENCES

[37] ARM, “ARM NEON.” http://www.arm.com/products/processors/
technologies/neon.php. [cited at p. 14]

[38] ARM, “ARM Advanced SIMD Instruction Scheduling.” http://infocenter.arm.
com/help/topic/com.arm.doc.ddi0409h/Babfjcjb.html. [cited at p. 14]

[39] S. Rivoire, M. Shah, P. Ranganatban, C. Kozyrakis, and J. Meza, “Models and met-
rics to enable energy-efficiency optimizations,” Computer, vol. 40, pp. 39 –48, dec.
2007. [cited at p. 15]

[40] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital design,” in Low
Power Electronics, 1994. Digest of Technical Papers., IEEE Symposium, pp. 8 –11, oct
1994. [cited at p. 15, 16]

[41] A. J. Martin, M. Nyström, and P. I. Pénzes, “Power aware computing,” in Power
Aware Computing (R. Graybill and R. Melhem, eds.), ch. ET2: A Metric For Time
and Energy Efficiency of Computation, pp. 293–315, Norwell, MA, USA: Kluwer
Academic Publishers, 2002. [cited at p. 16]

[42] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose micropro-
cessors,” Solid-State Circuits, IEEE Journal of, vol. 31, pp. 1277 –1284, sep 1996.
[cited at p. 16]

[43] R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes, “The energy efficiency of CMP
vs. SMT for multimedia workloads,” in Proceedings of the 18th annual international
conference on Supercomputing, ICS ’04, (New York, NY, USA), pp. 196–206, ACM,
2004. [cited at p. 17]

[44] E. Grochowski and M. Annavaram, “Energy per Instruction Trends in In-
tel®Microprocessors,” Technology@Intel Magazine, 2006. [cited at p. 17]

[45] M. Frigo and S. Johnson, “The Design and Implementation of FFTW3,” Proceedings
of the IEEE, vol. 93, pp. 216 –231, feb. 2005. [cited at p. 18]

[46] M. Frigo and S. G. J. et al, “FFT Benchmark Results.” http://www.fftw.org/
speed/. [cited at p. 18]

[47] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy, D. Patterson,
T. Anderson, and K. Yelick, “The energy efficiency of iram architectures,” in Com-
puter Architecture, 1997. Conference Proceedings. The 24th Annual International Sympo-
sium on, pp. 327 –337, jun 1997. [cited at p. 18]

[48] “The Green 500 Run Rules.” http://www.green500.org/docs/pubs/RunRules_
Ver0.9.pdf. [cited at p. 18]

[49] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, P. Huang,
M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Taylor, “The GreenDroid
Mobile Application Processor: An Architecture for Silicon’s Dark Future,” Micro,
IEEE, vol. 31, pp. 86 –95, march-april 2011. [cited at p. 18]

140

http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0409h/Babfjcjb.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0409h/Babfjcjb.html
http://www.fftw.org/speed/
http://www.fftw.org/speed/
http://www.green500.org/docs/pubs/RunRules_Ver0.9.pdf
http://www.green500.org/docs/pubs/RunRules_Ver0.9.pdf

REFERENCES 141

[50] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite: char-
acterization and architectural implications,” in Proc. of the 17th int’l conf. on Parallel
Architectures and Compilation Techniques, PACT ’08, pp. 72–81, 2008. [cited at p. 19]

[51] F. Black and M. S. Scholes, “The Pricing of Options and Corporate Liabilities,”
Journal of Political Economy, vol. 81, pp. 637–54, May-June 1973. [cited at p. 19, 20]

[52] L. R. Rabiner, B. Gold, and C. K. Yuen, Theory and Application of Digital Signal Pro-
cessing. Prentice-Hall, feb. 1978. [cited at p. 20]

[53] R. W. Hockney, “A Fast Direct Solution of Poisson’s Equation Using Fourier Anal-
ysis,” J. ACM, vol. 12, pp. 95–113, January 1965. [cited at p. 20]

[54] A. Schönhage and V. Strassen, “Schnelle multiplikation großer zahlen,” Computing,
vol. 7, pp. 281–292, 1971. 10.1007/BF02242355. [cited at p. 20]

[55] E. O. Brigham and R. E. Morrow, “The fast Fourier transform,” Spectrum, IEEE,
vol. 4, pp. 63 –70, dec. 1967. [cited at p. 21]

[56] Intel, Intel®64 and IA-32 Architectures Software Developer’s Manual, dec 2011.
[cited at p. 25, 26, 41, 43, 44]

[57] ARM, “SYS_CFG Registers Documentation.” http://infocenter.arm.com/help/
topic/com.arm.doc.dui0447e/CACDEFGH.html. [cited at p. 26]

[58] ARM, “CoreTile Express A9x4 Voltage, Current and Power Monitoring.”
http://infocenter.arm.com/help/topic/com.arm.doc.dui0448e/CHDCEIEJ.html.
[cited at p. 27]

[59] ARM, “ARM Legacy Memory Map.” http://infocenter.arm.com/help/topic/com.
arm.doc.dui0447e/ch04s02s01.html. [cited at p. 27]

[60] ARM, “ARM System Register Summary.” http://infocenter.arm.com/help/topic/
com.arm.doc.dui0447e/CHDICIIF.html. [cited at p. 27]

[61] S. L. Moshier, “Cephes Math Library.” http://www.netlib.org/cephes. [cited at p. 28,

45]

[62] J. Pommier, “Simple SSE and SSE2 (and now NEON) optimized sin, cos, log and
exp.” http://gruntthepeon.free.fr/ssemath/. [cited at p. 28]

[63] Intel, Intel®Advanced Vector Extensions Programming Reference, jun 2011. [cited at p. 29]

[64] Intel, “Haswell New Instruction Descriptions Now Avail-
able!.” http://software.intel.com/en-us/blogs/2011/06/13/
haswell-new-instruction-descriptions-now-available/. [cited at p. 29]

[65] ARM, “VRECPE and VRSQRTE Instructions Documentation.” http://infocenter.
arm.com/help/topic/com.arm.doc.dui0489g/CIHCHECJ.html. [cited at p. 33]

[66] ARM, “VRECPS and VRSQRTS Instructions Documentation.” http://infocenter.
arm.com/help/topic/com.arm.doc.dui0489g/CIHDIACI.html. [cited at p. 33]

http://infocenter.arm.com/help/topic/com.arm.doc.dui0447e/CACDEFGH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0447e/CACDEFGH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0448e/CHDCEIEJ.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0447e/ch04s02s01.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0447e/ch04s02s01.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0447e/CHDICIIF.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0447e/CHDICIIF.html
http://www.netlib.org/cephes
http://gruntthepeon.free.fr/ssemath/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489g/CIHCHECJ.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489g/CIHCHECJ.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489g/CIHDIACI.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489g/CIHDIACI.html

142 REFERENCES

[67] IEEE, “IEEE Standard for Floating-Point Arithmetic,” tech. rep., Microprocessor
Standards Committee of the IEEE Computer Society, 3 Park Avenue, New York,
NY 10016-5997, USA, Aug. 2008. [cited at p. 33]

[68] Matteo Frigo and Stevenj G. Johnson, “benchFFT.” http://www.fftw.org/
benchfft/. [cited at p. 35]

[69] Intel, Intel®64 and IA-32 Architectures Optimization Reference Manual, jun 2011.
[cited at p. 37]

[70] ARM, “CoreTile Express A9x4 Test Chip Clocks.” http://infocenter.arm.com/
help/topic/com.arm.doc.dui0448e/CHDEJGAD.html. [cited at p. 39]

[71] ARM, “CoreTile Express A9x4 specification sheet.” http://www.arm.com/files/
pdf/CE_A9x4(1).pdf. [cited at p. 39]

[72] ARM, “ARMv8 Technology Preview.” http://www.arm.com/files/downloads/
ARMv8_Architecture.pdf. [cited at p. 42]

[73] Intel, “Intel Core i7-2600K Processor specifications.” http://ark.intel.
com/products/52214/Intel-Core-i7-2600K-Processor-(8M-Cache-3_40-GHz).
[cited at p. 44]

[74] University of Tennessee, “PAPI Website.” http://icl.cs.utk.edu/papi/index.html.
[cited at p. 44]

[75] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and
P. Sadayappan, “Effective automatic parallelization of stencil computations,” SIG-
PLAN Not., vol. 42, pp. 235–244, June 2007. [cited at p. 45]

[76] Stanford University, “Folding@home FLOP FAQ.” http://folding.stanford.edu/
English/FAQ-flops. [cited at p. 45, 46]

[77] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint com-
puter conference, AFIPS ’67 (Spring), (New York, NY, USA), pp. 483–485, ACM, 1967.
[cited at p. 49]

[78] M. Frigo and S. G. Johnson, FFTW User’s Manual, March 2003. [cited at p. 62]

142

http://www.fftw.org/benchfft/
http://www.fftw.org/benchfft/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0448e/CHDEJGAD.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0448e/CHDEJGAD.html
http://www.arm.com/files/pdf/CE_A9x4(1).pdf
http://www.arm.com/files/pdf/CE_A9x4(1).pdf
http://www.arm.com/files/downloads/ARMv8_Architecture.pdf
http://www.arm.com/files/downloads/ARMv8_Architecture.pdf
http://ark.intel.com/products/52214/Intel-Core-i7-2600K-Processor-(8M-Cache-3_40-GHz)
http://ark.intel.com/products/52214/Intel-Core-i7-2600K-Processor-(8M-Cache-3_40-GHz)
http://icl.cs.utk.edu/papi/index.html
http://folding.stanford.edu/English/FAQ-flops
http://folding.stanford.edu/English/FAQ-flops

	Acknowledgements
	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Scope and Goals
	1.3 Terminology
	1.3.1 Performance Measurements and FLOPS

	1.4 Contributions
	1.5 Thesis Outline

	2 Background
	2.1 The Mont Blanc Project and Exascale Computing
	2.1.1 Challenges for exascale supercomputers
	2.1.2 The Mont Blanc project

	2.2 OpenMP Super Scalar (OmpSs)
	2.2.1 Task-based programming
	2.2.2 Heterogeneous capabilities
	2.2.3 Nanos++ and Mercurium
	2.2.4 OmpSs in Mont Blanc
	2.2.5 Task scheduling and scheduling algorithms

	2.3 Single Instruction, Multiple Data (SIMD)
	2.3.1 Streaming SIMD extensions (SSE)
	2.3.2 Advanced Vector Extensions (AVX)
	2.3.3 ARM Advanced SIMD Extensions (NEON)

	2.4 Energy Efficiency Metrics
	2.4.1 Energy and power
	2.4.2 GFLOPS/W
	2.4.3 Energy-delay products

	2.5 Related Work
	2.5.1 The Energy Efficiency of CMP vs SMT for Multimedia Workloads
	2.5.2 Energy per Instruction Trends in Intel®Microprocessors
	2.5.3 Evaluation of OpenMP Task Scheduling Strategies
	2.5.4 Parallelization of Black-Scholes and dense matrix-matrix multiply using OmpSs
	2.5.5 Benchmarking of FFTW
	2.5.6 Energy efficiency of IRAM architectures
	2.5.7 Green500
	2.5.8 Energy-saving mobile processor architectures

	3 Application Kernels
	3.1 Black-Scholes (BSOP)
	3.2 Fastest Fourier Transform in the West (FFTW)
	3.3 Dense General Matrix-Matrix Multiplication and ATLAS

	4 Implementation
	4.1 Energy Measurement Algorithms
	4.1.1 Sandy Bridge
	4.1.2 ARM Cortex-A9 MPCore

	4.2 Porting of SSE log and exp to AVX and NEON
	4.2.1 Porting to AVX
	4.2.2 Porting to NEON

	4.3 Black-Scholes
	4.3.1 Vectorization

	4.4 Fastest Fourier Transform in the West
	4.4.1 Modifications to the FFTW library
	4.4.2 Implementation of the benchmark

	4.5 Matrix Multiplication

	5 Experiment Setup and Methodology
	5.1 Test Bench
	5.1.1 Hardware
	5.1.2 Software and Libraries
	5.1.3 Compiler and compiler flags

	5.2 Experiment Methodology
	5.2.1 Energy Measurements
	5.2.2 Experiments
	5.2.3 Cache behavior experiments

	5.3 Defining FLOPS Counts
	5.4 Problem Sizes and Memory Footprints
	5.5 Statistical Metrics

	6 Results and Discussion
	6.1 Black-Scholes: Scheduling and Variability in Nanos++ Version 0.6a
	6.2 Black-Scholes Results
	6.2.1 Performance
	6.2.2 Energy efficiency
	6.2.3 Discussion

	6.3 FFTW
	6.3.1 Performance
	6.3.2 Energy efficiency
	6.3.3 Discussion

	6.4 Matrix multiplication
	6.4.1 Performance
	6.4.2 Energy efficiency

	7 Performance Modelling and Discussion
	7.1 Discussion and Analysis of Performance
	7.1.1 Task creation and scheduling
	7.1.2 Cache behavior

	7.2 Energy Efficiency
	7.2.1 Impact of vectorization
	7.2.2 Impact of multiple cores and hyper-threading
	7.2.3 Energy usage for large problems

	8 Conclusion
	8.1 Scheduling
	8.2 Vectorization
	8.3 Multi-threading
	8.4 Derived models and discussions
	8.5 Conclusion - ARM
	8.6 Future Work
	8.6.1 Full system energy measurement
	8.6.2 Benchmarks on consumer-grade ARM CPUs and Ivy Bridge
	8.6.3 GPUs and accelerators
	8.6.4 Additional applications
	8.6.5 Energy-efficient algorithms

	8.7 Concluding remarks

	Appendices
	A Performance and Energy Efficiency Results - ARM
	B Tabulated Data
	C AVX Enabled Logarithms and Exponential Functions
	D NEON Enabled Logarithms and Exponential Functions
	E SSE, AVX and NEON Accellerated Black-Scholes - Source code
	F FFTW Implementation with OmpSs
	G Experiment Framework
	G.1 Experiment Scripts
	G.1.1 Experiment specification files and test suites
	G.1.2 Database layout
	G.1.3 Adding support for more benchmarks

	G.2 Results Extraction and Presentation

	H Paper
	References

